
USERS GUIDE for

A THREE-DIMENSIONAL, PRIMITIVE EQUATION,
NUMERICAL OCEAN MODEL

George L. Mellor
Program in Atmospheric and Oceanic Sciences

Princeton University, Princeton, NJ 08544-0710

This revision: October 2002

 2

 Notes on a 1998 Revision This version of the users guide recognizes changes that have
ocurred since 1991. The code itself incorporates some recent changes. the fortran names,
tmean, smean have been changed (globally) to tclim, sclim in oder to distiquish the
function and treatment of these variables from that of rmean. the names, trnu, trnv, have
been changed to drx2d, dry2d and the names, advuu, advvv, to adx2d, ady2d to more
clearly indicate their functions. Instead of a wind driven closed basin, pom97.f now
solves the problem of the flow through a channel which includes an island or a seamount
at the center of the domain. Thus, subroutine bcond contains active open boundary
conditions. These illustrative boundary conditions, however, are one set of many
possibilities and, consequently, open boundary conditions for regional models pose
difficult choices for users of the model. This 1998 revision contains a fuller discussion of
open boundary conditions in section 16.

Notes on this 2002 revision The basic code, now labeled pom2k.f results from extensive
tidying by John Hunter which includes more comments and lower case fortran variables,
a move which apparently renders the code “modern”. However the basic – we believe,
well conceived - structure of the code remains unchanged.

As of this revision date, October 2002, there are over 1000 POM users of record.

 Sponsor Acknowledgment: The development and application of the program has had
many sponsors since 1977. They include the Geophysical Fluid Dynamics
Laboratory/NOAA, Princeton University, Sea Grant/NOAA through the New Jersey
Marine Sciences Consortium, the Department of Energy, Minerals Management
Services/DOI, the National Ocean Services/NOAA, the Institute of Naval Oceanography
and the Office of Naval Research/DOD.

Web site: http://www.aos.princeton.edu/WWWPUBLIC/htdocs.pom/

Title Page Illustration: North Atlantic velocity field on the 32.45 potential density
surface. Courtesy Dr. Sirpa Häkkinen.

 3

CONTENTS
 Page

1. INTRODUCTION 4

2. THE BASIC EQUATIONS 6

3. FORTRAN SYMBOLS 13

4. THE NUMERICAL SCHEME 16

5. comblk.h 22

6. program pom2k and the external mode 22

7. subroutine advave 23

8. subroutine advt 23

9. subroutine proft 23

10. subroutine baropg 26

11. subroutines advct, advu and advv 26

12. subroutines profu and profv 27

13. subroutine advq 27

14. subroutine profq 27

15. subroutine vertvl 28

16. subroutine bcond 28

17. subroutine dens 33

18 subroutine slpmin 33

19. Utility Subroutines 33

20. PROGRAM CURVIGRID 32

 APPENDIX A 35

 REFERENCES 39

 4

1. INTRODUCTION

 This report is documentation for a numerical ocean model created by Alan
Blumberg and me around 1977. Subsequent contributions were made by Leo Oey, Jim
Herring, Lakshmi Kantha and Boris Galperin and others. In recent years Tal Ezer has
been an important force in research using the model and in helping others to use it.
Institutionally, the model was developed and applied to oceanographic problems in the
Atmospheric and Oceanic Sciences Program of Princeton University, the Geophysical
Fluid Dynamics Laboratory of NOAA and Dynalysis of Princeton. Many sponsors, as
acknowleged above, have supported the effort. Papers that either describe the numerical
model (Blumberg and Mellor, 1987) or made use of the model are contained in the
Reference Section and a more complete list is available on the POM home page at
http://www.aos.princeton.edu/WWWPUBLIC/htdocs.pom.
 The model is oftentimes referenced as the Princeton Ocean Model (POM). The
principal attributes of the model are as follows:

o It contains an imbedded second moment turbulence closure sub-model to provide
vertical mixing coefficients.
o It is a sigma coordinate model in that the vertical coordinate is scaled on the water
column depth.
o The horizontal grid uses curvilinear orthogonal coordinates and an "Arakawa C"
differencing scheme.
o The horizontal time differencing is explicit whereas the vertical differencing is
implicit. The latter eliminates time constraints for the vertical coordinate and permits the
use of fine vertical resolution in the surface and bottom boundary layers.
o The model has a free surface and a split time step. The external mode portion of the
model is two-dimensional and uses a short time step based on the CFL condition and the
external wave speed. The internal mode is three-dimensional and uses a long time step
based on the CFL condition and the internal wave speed.
o Complete thermodynamics have been implemented.

 The turbulence closure sub-model is one that I introduced (Mellor, 1973) and then
was significantly advanced in collaboration with Tetsuji Yamada (Mellor and
Yamada,1974; Mellor and Yamada,1982). It is often cited in the literature as the Mellor-
Yamada turbulence closure model (but, it should be noted that the model is based on

 5

turbulence hypotheses by Rotta and Kolmogorov which we extended to stratified flow
cases). Here, the Level 2.5 model is used together with a prognostic equation for the
turbulence macroscale. The closure model is contained in subroutines PROFQ and
ADVQ. A list of papers pertaining to the closure model is also included in the Reference
section. A much more extensive list of references by user of POM is on the web site.
 By and large, the turbulence model seems to do a fair job simulating mixed layer
dynamics although there have been indications that calculated mixed layer depths are a
bit too shallow (Martin, 1985). A recent paper (Melloor 2001) suggests ameliorative
changes which are incorporated in this version. Also, wind forcing may be spatially
smoothed and temporally smoothed. It is known that the latter process will reduce mixed
layer thicknesses (Klein, 1980). Further study is required to quantify these effects.
 The sigma coordinate system is probably a necessary attribute in dealing with
significant topographical variability such as that encountered in estuaries or over
continental shelf breaks and slopes. Together with the turbulence sub-model, the model
produces realistic bottom boundary layers which are important in coastal waters (Mellor,
1985) and in tidally driven estuaries (Oey et al., 1985a, b) which the model can simulate
since it does have a free surface. More recently, we find that bottom boundary layers are
important for deep water formation processes (Zavatarelli and Mellor, 1995; Jungclaus
and Mellor, 1996; Baringer and Price, 1996) and, possibly, for the maintenance of the
baroclinicity of oceans basins (Mellor and Wang, 1996).
 The horizontal finite difference scheme is staggered and, in the literature, has
been called an Arakawa C-grid. The horizontal grid is a curvilinear coordinate system, or
as a special case, a rectilinear coordinate system may be easily implemented. The
advection, horizontal diffusion and, in the case of velocity, the pressure gradient and
Coriolis terms are contained in subroutines advt, advq, advct, advu, advv and advave.
The horizontal differencing could be changed without affecting the overall logic of the
program or the remaining subroutines. The vertical diffusion is handled in subroutines,
proft, profq, profu and profv.
 The specific program that is now supplied to outside users (as of June 1996)
simulates the flow, east to west across a seamount with a prescribed vertical temperature
stratification, constant salinity, zero surface heat and salinity flux and a zero wind stress
distribution although wind stress may be easily applied. The program should run with no
additional data requirements. The open boundary conditions specified in subroutine
bcond for this problem are a sampling of many possible open boundary conditions. I
leave it to users to invent their own problems, defined by topography, horizontal grid
(rectilinear, where dx(i, j) is specified as a function of i and dy(i, j) as a function of j, or
a more general orthogonal curvilinear grid in which case dx and dy are both functions of i

 6

and j), vertical sigma grid and boundary conditions. Users may need to alter program
pom2k and subroutine bcond; in principal, there should be no need to alter any of the
other subroutines.
 The present program code is written in standard FORTRAN 77. There are other
versions in existence, but we only support and maintain the single version.
 Provision has been made so that the 2-D (external mode) portion of the model can
be run cum sole. In this case, the bottom shear stress, normally a consequence of the 3-D
calculation and the turbulence mixing coefficient, is replaced by a quadratic drag relation.
The code may also be run in a diagnostic mode where the thermodynamic properties are
invariant in time.
 Users will need to write their own code to set up their own problem dependent,
initial conditions and lateral and surface boundary conditions. We can, however, supply
simple subroutines that convert data for a constant z-level coordinate system to a sigma
coordinate system and vice versa.

 To access pom2k.f and other files through Internet, type ftp ftp.aos.princeton.edu; when
prompted for your name, type anonymous; when prompted for a password, type your iternet address; after
receiving a guest login ok, type cd pub/pom. You may list filenames with the ls command. You may
download with the command get filename. Type quit to terminate.
 Alternately, check the POM web page on
 http://www.aos.princeton.edu/WWWPUBLIC/htdocs.pom

 The current code as of is called pom2k.f. To run the code, transfer pom2k.f and
pom2k.c to a directory, compile and run. A netCDF utility, pom2k.n, is also available and
may be downloaded to create netCDF output.

2. THE BASIC EQUATIONS
 The basic equations have been cast in a bottom following, sigma coordinate
system which is illustrated in Figure 1. The reader is referred to Phillips (1957) or
Blumberg and Mellor (1980,1987) for a derivation of the sigma coordinate equations
which are based on the transformation,

 x* = x, y* = y, σ =
z - η

H + η
, t* = t (1a, b, c, d)

where x,y,z are the conventional cartesian coordinates; D ≡ H + η where H (x, y) is the
bottom topography and η(x, y, t) is the surface elevation. Thus, σ ranges from σ = 0 at z
= η to σ = -1 at z = −H. After conversion to sigma coordinates and deletion of the
asterisks, the basic equations may be written (in horizontal cartesian coordinates),

 7

η

σ = −1

σ = 0z = 0

z = H(x,y)

Figure 1. The sigma coordinate system.

∂DU
∂x

 +
∂DV
∂y

 +
∂ω
∂σ

 +
∂η
∂ t

 = 0 (2)

x
gDfVDU

y
UVD

x
DU

t
UD

∂
∂η

∂σ
ω∂

∂
∂

∂
∂

∂
∂ + - + + +

2

 x
M

o

o

FU
D

Kd
x
D

Dx
gD +

2





=′





′
′′

−
′

+ ∫ ∂σ
∂

∂σ
∂σ

σ∂
ρ∂

∂
∂σ

∂
ρ∂

ρ σ
 (3)

y
gDfUDV

y
DV

x
UVD

t
VD

∂
∂η

∂σ
ω∂

∂
∂

∂
∂

∂
∂ + + + + +

2

 +
gD2

ρo

∂ ′ ρ
∂y

 −
′ σ

D
∂D
∂y

∂ ′ ρ
∂ ′ σ


 


  σ

o
∫ d ′ σ =

∂
∂σ

KM
D

∂V
∂σ


 


  + Fy (4)

∂TD

∂t
 +

∂TUD
∂x

 +
∂TVD

∂y
 +

∂Tω
∂σ

 =
∂

∂σ

KH
D

∂T
∂σ







 + FT −
∂R
∂z

 (5)

∂SD

∂t
 +

∂SUD
∂x

 +
∂SVD

∂y
 +

∂Sω
∂σ

 =
∂

∂σ
KH
D

∂S
∂σ






 + FS (6)

∂q2D

∂t
 +

∂Uq2 D
∂x

 +
∂Vq2 D

∂y
 +

∂ωq2

∂σ
 =

∂
∂σ

Kq

D
∂q2

∂σ


 


 

 8

+

2KM
D

∂U
∂σ



 




2
 +

∂V
∂σ



 




2







 +

2g
ρo

KH
∂ ˜ ρ
∂σ

 -
2Dq3

B1l
 + Fq (7)

∂q2 l D
∂ t

 +
∂Uq2 l D

∂x
 +

∂Vq2 l D
∂y

 +
∂ωq2 l

∂σ
 =

∂
∂s

Kq
D

∂q2 l
∂σ


 


 

+ E1l

KM
D

∂U
∂σ







2
 +

∂V
∂σ







2







 + E3

g
ρo

KH
∂ ˜ ρ
∂σ









 ˜ W -

Dq3

B1
+ Fl (8)

 Definitions of the variables are contained in section 3. Note that ω is the
transformed vertical velocity; physically, ω is the velocity component normal to sigma
surfaces. The transformation to the Cartesian vertical velocity is

W =ω +U σ
∂D
∂x

+
∂η
∂x





 +V σ

∂D
∂y

+
∂η
∂y



 


+σ

∂D
∂ t

+
∂η
∂ t

 The so-called wall proximity function is prescribed according to

 ˜ W = 1+ E2(l / kL) where L−1 = (η − z)−1 + (H − z)−1. Also,
∂ ˜ ρ / ∂σ ≡ ∂ρ / ∂σ − cs

−2∂p / ∂σ (see discussion of static stability in Appendix A) where

cs is the speed of sound. Note that T is potential temperature (see Appendix A).
 In equations (3) and (4), ρMEAN should be subtracted from ρ to form ′ ρ before
the integration is carried out in subroutine BAROPG. ρMEAN is generally the initial

density field which is area averaged on z-levels and then transferred to sigma coordinates
in the exact same way as the initial density field. This procedure should reduce the
truncation errors associated with the calculation of the pressure gradient term in sigma
coordinate over steep topography (see Mellor et al., 1994 and Mellor et al. 1998 for
evaluation of this error in POM).
 The horizontal viscosity and diffusion terms are defined according to:

Fx ≡
∂
∂x

Hτxx() +
∂
∂y

Hτ xy() (9a)

Fy ≡
∂
∂x

Hτ xy() +
∂
∂y

Hτ yy() (9b)

where

 9

 τ xx = 2AM
∂U
∂x

, τ xy = τ yx = AM
∂U
∂y

 +
∂V
∂x







 , τ yy = 2AM

∂V
∂y

 (10a,b,c)

Also,

 Fφ ≡
∂
∂x

Hqx() +
∂
∂y

Hqy() (11)

where

 qx ≡ AH
∂φ
∂x

 , qy ≡ AH
∂φ
∂y

 (12a,b)

and where φ represents T, S, q2 or q2 l . It should be noted that these horizontal diffusion
terms are not what one would obtain by transforming the conventional forms to the sigma
coordinate system. Justification for the present forms will be found in Mellor and
Blumberg (1985) and relate to the fact that we wish to maintain a valid bottom boundary
layer simulation in the face of horizontal diffusion which may be large. The penalty for
this is that (12a,b) in sigma coordinates can introduce vertical fluxes even when
isotherms and isohalines are flat in cartesian coordinates. The remedy for this is, first, the
use of a Smagorinsky diffusivity (see below) so that, at least when velocities are small or
nil, so are the values of qx and qy . The second remedy is that, before executing (12a, b)
for temperature or salinity, we first subtract TCLIM and SCLIM which are "climatologies"
of T and S. The latter may be true climatologies (e.g.; Levitus) or approximations such as
temperature and salinities which are area averaged prior to transfer to sigma coordiates
(in which case, they are treated the same as ρMEAN). If something like a Levitus
climatology is used, then most of the vertical component of the diffusion is removed;
furthermore, the diffusion terms tend to slowly drive the scalars back to climatology
rather than to a horizontally homogeneous state as in the case of z - level models. The
third remedy is make use of small diffusivity relative to visosity. Thus, the value,
TPRNI ≡ AH AM , can genmerally set to a small number, say 0.2, or even zero in some
cases.
 It should be noted that the treatment in (9a,b), (10a,b), (11) and (12a,b)allows for
a realistic treatment of bottom boundary layers. The bottom boundary layer is important
in tidally driven regions, in wind driven coastal regions and according to Mellor and
Wang (1996), in deep ocean basins.
 In (9a, b) and (11), H is used in place of D for the small algorithmic simplication
it offers for terms whose physical significance is questionable.

 10

The Smagorinsky Diffusivity
 We generally use the Smagorinsky diffusivity for horizontal diffusion although a
constant or biharmonic diffusion can and has been used instead. The Smagorinsky
formula is,

 AM = C∆x∆y
1
2

 ∇V + ∇V()T

where ∇V + (∇V)T

 /2 =[(∂u / ∂x)2 + (∂v / ∂x + ∂u / ∂y)2 / 2 + (∂v / ∂y)2]1/2 . Values of C
(the HORCON parameter) in the range, 0.10 to 0.20 seem to work well, but, if the grid
spacing is small enough (Oey et al, 1985a,b), C can be nil. An advantage of the
Smagorinsky relation is that C is non-dimensional; related advantages are that AM

decreases as resolution improves and that AM is small if velocity gradients are small.

Vertical Boundary Conditions.
 The vertical boundary conditions for (2) are

ω 0() = ω -1() = 0 (13a,b)
However, if there is to be surface throughflow of (usually fresh) water, 0)0(≠ω .

 The surface boundary conditions for (3) and (4) are

KM
D

∂U
∂σ

,
∂V
∂σ





 = − < wu(0()>, < wv(0) >), σ → 0 (14a,b)

where the right hand side of (14a,b) is the input values of the surface turbulence
momentum flux (the stress components are opposite in sign). The bottom boundary
conditions are

KM
D

∂U
∂σ

,
∂V
∂σ





 = Cz U2 + V 2[]1/2

U,V(), σ → −1 (14c,d)

where

 Cz = MAX
κ 2

ln 1+ σkb−1()H / zo{ }[]2
, 0.0025













 (14e)

κ = 0.4 is the von Karman constant and zo is the roughness parameter. Equations
(14c,d,e) can be derived by matching the numerical solution to the "law of the wall".

 11

Numerically, they are applied to the first grid points nearest the bottom. Where the
bottom is not well resolved, (1+σkb-1)H/zo is large and (14e) reverts to an ordinary drag
coefficient formulation. The boundary conditions on (5) and (6) are

KH
D

∂T
∂σ

,
∂S
∂σ





 = − < wθ(0) >() , σ → 0 (15a,b)

KH
D

∂T
∂σ

,
∂S
∂σ





 = 0 , σ → − 1 (15c,d)

The boundary conditions for (7) and (8) are

 q
2(0),q2l (0)() = B1

2/3 uτ
2(0), 0() (16a,b)

 q
2(−1), q2l (−1)() = B1

2/3 uτ
2(−1), 0() (16c,d)

where B1 is one of the turbulence closure constants and uτ is the friction velocity at the
top or bottom as denoted. In pom97.f, (16a) has been replaced by

 q
2l (σ1) = q2 (σ1) κDσ1 where σ1 is the value of σ corresponding to k =1, it is believed

that this averts some numerical noise in some applications.

The Vertically Integrated Equations
 The equations, governing the dynamics of coastal circulation, contain fast moving
external gravity waves and slow moving internal gravity waves. It is desirable in terms
of computer economy to separate the vertically integrated equations (external mode) from
the vertical structure equations (internal mode). This technique, known as mode splitting
(Simons, 1974; Madala and Piacsek, 1977) permits the calculation of the free surface
elevation with little sacrifice in computational time by solving the velocity transport
separately from the three-dimensional calculation of the velocity and the thermodynamic
properties.
 The velocity transport, external mode equations are obtained by integrating the
internal mode equations over the depth, thereby eliminating all vertical structure. Thus,
by integrating Equation (2) from σ = − 1 to σ = 0 and using the boundary conditions
(13a,b), an equation for the surface elevation can be written as

∂η
∂ t

 +
∂U D

∂x
 +

∂V D
∂y

 = 0 (17)

 12

After integration, the momentum equations, (3) and (4), become

∂U D
∂t

+
∂U 2D

∂x
+

∂U V D
∂y

− ˜ F x − fV D + gD
∂η
∂x

 = − < wu(0) > + < wu(-1) >

 + Gx −
gD
ρo

D
∂ ′ ρ
∂x

−
∂D
∂x

′ σ
∂ ′ ρ
∂σ


 


  σ

o
∫-1

o
∫ d ′ σ dσ (18)

∂V D

∂t
+

∂U V D
∂x

+
∂V 2D

∂y
− ˜ F y + fU D + gD

∂η
∂y

 = − < wv(0) > + < wv(-1) >

+ Gy −
gD
ρo

D
∂ ′ ρ
∂y

−
∂D
∂y

′ σ
∂ ′ ρ
∂σ


 


  σ

o
∫-1

o
∫ d ′ σ dσ (19)

The overbars denote vertically integrated velocities such as

U ≡ U dσ .
-1

o
∫ (20)

The wind stress components are − < wu(0) > and − < wu(0) > , and the bottom stress
components are − < wu(−1) > and − < wu(−1) > . The quantities ˜ F x and ˜ F y are defined

according to

 ˜ F x =
∂
∂x

H2A M
∂U
∂x


 


  +

∂
∂y

HA M
∂U
∂y

 +
∂V
∂x

















 (21a)

and

 ˜ F y =
∂
∂y

H2A M
∂V
∂y


 


  +

∂
∂x

HA M
∂U
∂y

 +
∂V
∂x

















 (21b)

The so-called dispersion terms are defined according to

 Gx =
∂U 2D

∂x
 +

∂U V D
∂y

 − ˜ F x −
∂U2D

∂x
 −

∂UVD
∂y

 + F x (22a)

Gy =
∂U V D

∂x
 +

∂V 2D
∂y

 − ˜ F y −
∂UVD

∂x
 −

∂V2D
∂y

 + F y (22b)

Note that, if AM is constant in the vertical, then the "F" terms in (22a) and (22b) cancel.
However, we account for possible vertical variability in the horizontal diffusivity; such is
the case when a Smagorinsky type diffusivity is used. As detailed below, all of the terms
on the right side of (18) and (19) are evaluated at each internal time step and then held

 13

constant throughout the many external time steps. If the external mode is executed cum
sole, then Gx = Gy = 0.

3. FORTRAN SYMBOLS
 In the following table, we list the FORTRAN symbols followed by their
corresponding analytical symbols in parentheses and a brief description of the symbols.
Not explicitly tabulated are the suffixes b, blank and f which are appended to many of the
variables to denote the time levels n - 1, n and n + 1 respectively.

Indices
 i, j (1,j) horizontal grid indexes
 im, jm outer limits of i and j
 k (k) vertical grid index; k = 1 at the top and k = kb at the

bottom
 iint (n) internal mode time step index
 iext external mode time step index

Constants
 days Specifies runtime (days)
 dte (∆te) external mode time step, (s)
 dti (∆ti) internal mode time step, (s)
..hmax Maximum depth for the particular application
 horcon(C)
 iend

the coefficient of the Smagorinsky diffusivity
total internal mode time steps

 iprint the interval in iint at which variables are printed
 isplit dti/dte
 kappa (κ) Von Karman's constant = 0.4
 mode

if mode = 2, a 2-D calculation is performed
if mode = 3, a 3-D prognostic calculation is performed
if mode = 4, a 3-D diagnostic calculation is performed

 nread (0 or 1) (does not or does) expect an beginning restart file
 rfe, rfw, rfn, rfs = 1 or 0 on the four open boundaries; for use in bcond
 rhoref reference density
 smoth (α) parameter in the temporal smoother
 tprni (AH/AM) inverse, horizontal, turbulence Prandtl number
 r, ad1, ad2 Constants in the radiative penetrative equation,

dependent on Jerlov type

 14

 umol background vertical diffusivity
..tbias, sbias temperature, salinity bias: for 32 bit arithmetic, may

reduce roudoff error.

One-dimensional Arrays

 z(σ) sigma coordinate which spans the domain, z = 0
(surface) to z = -1 (bottom)

 zz sigma coordinate, intermediate between Z
 dz(δσ) = z(k)−z(k+1)
 dzz = zz(k)−zz(k+1)

Two-dimensional Arrays

 aam2d vertical average of aam(m2 s-1)
 art, aru, arv cell areas centered on the variables, T, U and V

respectively (m2)

 advua, advva sum of the second, third and fourth terms in equations

(18,19)
 adx2d, ady2d vertical integrals of advx, advy; also the sum of the

fourth, fifth and sixth terms in equations (22a,b)
 cor (f) the Coriolis parameter (s-1)
 curv2d the vertical average of curv
 dum Mask for the u component of velocity; = 0 over land; =

1 over water
 dvm Mask for the v component of velocity; = 0 over land; =

1 over water
 fsm Mask for scalar variables; = 0 over land; = 1 over water
 dx (hx or δx) grid spacing (m)
 dy (hy or δy) grid spacing (m)
 el (η) the surface elevation as used in the external mode (m)
 et (η) the surface elevation as used in the internal mode and

derived from EL (m)
 eg (η) the surface elevation also used in theinternal mode for

the pressure gradient and derived from EL (m)

 15

 d (D) = h + el (m)
 dt (D) = h + et (m)
 drx2d, drx2d vertical integrals of drhox and drhoy
 h (H) the bottom depth (m)
 swrad short wave radiation incident on the ocean surface

 (m s-1oC)
 ua, va (U ,V) vertical mean of U,V (m s-1)
 ut, vt (U ,V) ua,va time averaged over the interval, DT = dti

(m s-1)
 wusurf, wvsurf (<wu(0)>, <wv(0)>) momentum fluxes at the surface

(m2s-2)
 wubot, wubot (<wu(-1)>, <wv(-1)>) momentum fluxes at the bottom

(m2s-2)
 wtsurf, wssurf (<wθ (0)>, <ws(0)>) temperature and salinity fluxes

at the surface (ms-1 oC, ms-1 psu)

Three-dimensional Arrays
 advx, advy horizontal advection and diffusion terms in equations (3)

and (4)
 aam (AM) horizontal kinematic viscosity (m2 s-1)
 aah (AH) horizontal heat diffusivity = TPRNI*AAM
 curv ((˜ f) curvature terms; see equation (28)
 l)(l turbulence length scale
 km (KM) vertical kinematic viscosity (m2s-1)
 kh (KH) vertical diffusivity (m2s-1)
 drhox x-component of the internal baroclinic pressure gradient

 gDhyρo
−1 −D δx ′ ρ δ ′ σ

σ
0

∫ + δx D ′ σ δ ′ ρ
σ
0

∫











subtract rmean from density
before integrating

 drhoy y-component of the internal baroclinic pressure gradient

 gDhxρo
−1 −D δ y ′ ρ δ ′ σ

σ
0

∫ + δy D ′ σ δ ′ ρ
σ
0

∫











subtract rmean from density
before integrating

 rad (R) short wave radiation flux (ms-1K). Sign is the same as
wtsurf

 q2 (q2) twice the turbulence kinetic energy (m2s-2)
 q2l (q2 l) q2 x the turbulence length scale (m3s-2)
 t (Τ) potential temperature (oC)

 16

 s (S) salinity (psu)
 rho (ρ -1000.)/rhoref density (non-dim.). Default rhoref=1025.
 u, v (U, V) horizontal velocities (m s-1)
 w (ω) sigma coordinate vertical velocity (m s-1)
 rmean density field which is horizontally averaged before

transfer to sigma coordinates.
 tclim a stationary temperature field which approximately has

the same vertical structure as T.
 sclim a stationary salinity field which approximately has the

same vertical structure as S.

 The variables, uf and vf, are used to denote the n+1 time level for u and v
respectively. However, in order to save memory they are also used to represent the n+1
time level for t and s and for q2 and q2l respectively. As soon as uf, vf are calculated for
each representation, the time level is reset.

4. THE NUMERICAL SCHEME
 Figure 2 is the flow chart for the program in simplified form. The external mode
calculation is contained in program pom2k.

External-Internal Mode Interaction.
 The external mode calculation in MAIN results in updates for surface elevation,
el, and the vertically averaged velocities, ua, va. The internal mode calculation results in
updates for u,v,t,s and the turbulence quantities.
 Fig. 3 illustrates the time stepping process for the external and internal mode.
Assume everything is known at tn-1 and tn (the previous leap frog time step having just
been completed). Integrals involving the baroclinic forcing and the advective terms are
supplied to the external mode along with the bottom stress, a process which is labeled
"Feedback" in Fig. 3; their values are held constant during tn < t < tn+1 . The external
mode "leap frogs" many times, with the time step, dte, until t = tn+1. The vertical and
time averaged velocities, utf, vtf, and those from the previous time step, utb,vtb, are time
averages of the external variables, ua,va. The internal and external modes have different
truncation errors so that the vertical integrals of the internal mode velocity may depart
slightly from (ua,va) during the course of a long integration. We therefore adjust the

 17

internal velocities, u,v, so that their vertical integrals are the mean of utf,vtf and utb,vtb.

START

9000
 IINT =1,IEND

Print

 STOP

Set Parmeters,
Initial Values

Set Parameters
Initial Values

 BAROPG

8000

Adjust integral
of U,V to match
 UT, VT

VERTVL
BCOND(5)

ADVQ(Q2)
ADVQ(Q2L)
PROFQ
BCOND(6)

 ADVT(T)
 ADVT(S)
 PROFT(T)
 PROFT(S)
 BCOND(4)

 ADVU
 ADVV
 PROFU
 PROFV
 BCOND(3)

 9000

 Compute EL

BCOND(1)

ADVAVE

Compute UA,VA

Compute UT,VT
 for use in
Internal Mode

BCOND(2)

8000

Figure 2. Flow diagram of the
code. The boxes with sidebars
contain subroutines.

IEXT = 1,ISPLIT

ADVCT

 18

Time n-1t nt n+1t

DTE

External Mode

ETB ET ETF
UTB
VTB

UTF
VTF

o o oo

Feedback

DTI
Internal Mode

Figure 3. A simplified illustration of the interaction of the External Mode and the Internal
Mode. The former uses a short time step, DTE, whereas the latter uses a long time step,
DTI. The external mode primarily provides the surface elevation to the internal mode
whereas, as symbolized by "Feedback", the internal mode provides intergrals of
momentum advection, density integrals and bottom stress to the external mode.

Care is taken to relate etf to elf so that together with etb, saved from a previous time
step, the internal velocities and etf and etb correctly satisfy the continuity equation, (17).
Otherwise, the sigma coordinate equations for t, s will not be conservative.
 Aside from the above, numerically important details, 0.5*(egf + egb) is used to
obtain the elevation gradients for the internal mode "leap frog" from tn-1 to tn+1. egf and
egb are el, averaged over the intervals, tn to tn+1 and tn-1 to tn, respectively. It is this
maneuver that renders the internal mode immune to the CFL condition based on the
barotropic wave speed. The governing wave speed is the baroclinic wave speed.

Structure of the Internal Mode Calculation.
 The calculation of the three-dimensional (internal) variables is separated into a
vertical diffusion time step and an advection plus horizontal diffusion time step. The
former is implicit (to accommodate small vertical spacing near the surface) whereas the
latter is explicit. To illustrate, consider the temperature equation,

∂DT
∂T

 + Adv(T) - Dif (T) =
1
D

∂
∂σ

KH
∂T
∂σ





 −

∂R
∂σ

 (23)

 19

Adv(T) and Dif(T) represents the advection and horizontal diffusion terms. The solution

is carried out in two steps. Thus, the advection and horizontal diffusion parts are

differenced according to

)(+)(- =
2

~
1-

111
nn

nn-n

TDifTAdv
t

T - DTD
∆

−+

 (24)

and is solved by subroutine advt. The vertical diffusion part is differenced according to

∂σ
∂

∂σ
∂

∂σ
∂ RTK

D
T - DTD n

Hn

n+nn

 1 =
t2

~ 1

1+

111

−







∆

+++

 (25)

and is solved by subroutine proft as detailed in section 9 wherein (25) is first divided by
Dn+1. Note that, in this subroutine, Tn-1 is stored in tb, Tn in t and Tn+1 in uf.
 In the "leap frog" time differencing scheme, the solutions at odd time steps can
diverge slowly from the solutions at the even time steps. This time splitting is removed
by a weak filter (Asselin, 1972) where the solution is smoothed at each time step
according to

Ts = T +
α
2

T n+1 - 2Tn + T n-1()

where Ts is the smoothed solution; frequently, we use α = 0.05 . This technique
introduces less damping than either the Euler-backward or forward stepping techniques.
After smoothing, Ts is reset to Tn-1 and Tn+1 to Tn.

Grid Arrangement
 The staggered grid arrangement for the external mode is depicted in Fig. 4 and 5
for the external and internal grid respectively. These diagrams will be useful in
understanding the coding in pom2k and in the "prof" and "adv" subroutines. Although the
fortan nomenclature in the code may appear to be cartesian coordinates, the grid can be
an orthogonal curvilinear grid. One merely needs to specify hx(=dx(i, j)) and hy(=dy(i, j))
as that associated with a particular grid. The advective operators in equations (2) to (8)
and (17) to (19) are then described in a finite volume sense; i.e. Equation (5) or, rather,
the Adv operator in (24), is written

 20

VA(I,J+1)

UA(I,J) UA(I+1,J)

VA(I,J)

y

x

η(I,J)

Figure 4. The two-dimensional external mode grid.

 V(I,J+1)

U(I,J,K) U(I+1,J,K)

V(I,J)

y

x

T(I,J,K)
Q(I,J,K)

plan view

 W(I,J,K)
 Q(I,J,K)

U(I,J,K) U(I+1,J,K)

σ

x

T(I,J,K)

elevation view

 W(I,J,K+1)
 Q(I,J,K+1)

Z(K)

ZZ(K)

Z(K+1)

Figure 5. The three-dinensional internal mode grid. Q represents km, kh, q2, or q2l. t
represents t,s or rho.

 21

 −Adv(T)hx hy = δx DhyUT() + δ y(DhxVT) + hxhy
δσ (ωT)

δσ
 (26)

(where it might be more consistent to multiply through by δσ, but this has not been
effected in the code). Thus DhyUT represents the transport of T and δx represents the
difference in this quantity through the opposing faces of the volume element. We leave it
to the code listing in subroutine advt to describe the exact method of differencing.
 The differencing for the velocity is accomplished in a similar way but involves
Coriolis and curvature terms. The advective term for U in equation (3) is

−Adv(U)hx hy = δx DhyUU() + δy (DhxUV) + hxhy
δσ(ωU)

δσ
− ˜ f VD hx hy

 (27)

where

 ˜ f =
Vδ x (hy)

hxhy
 -

Uδy (hx)
hxhy

 (28)

is the curvature term. In ADVCT, the horizontal advection, diffusion and curvature terms
are calculated (and stored in ADVX, ADVY) well in advance of ADVU and ADVV so
that their vertical averages can be used in the external mode calculation. In ADVU and
ADVV, the pressure gradient, Coriolis and vertical advection are included along with the
terms imported from ADVCT.

Time Step Constraints.
 The Courant-Friedrichs-Levy (CFL) computational stability condition on the
vertically integrated, external mode, transport equations limits the time step according

 ∆tE ≤
1
Ct

1

δx2 +
1

δy2

−1/2
 (29)

where Ct = 2(gH)1/2 + Umax ; Umax is the expected, maximum velocity. There are other
restrictions but in practice the CFL limit is the most stringent. The model time step is
usually 90% of this limit. The internal mode has a much less stringent time step since the
fast moving external mode effects have been removed. The time step criteria is
analogous to that for the external mode given by Equation (26) and is

∆tI ≤
1

CT

1
δx2 +

1
δy2

−1/2
 (30)

 22

where CT = 2C + Umax; CT is the maximum internal gravity wave speed based on the
gravest mode, commonly of order 2m/s, and Umax is the maximum advective speed. For
typical coastal ocean conditions the ratio of the time steps, ∆tI / ∆tE = dti/dte, is often a
factor of 50 - 80 or larger. For more information on the sensitivity of POM to time steps,
see Ezer et al. (2002)

 Additional limits are imposed by horizontal diffusion of momentum or scalars
are, for A = AM or A = AH

 ∆tI ≤
1

4A

1
∆x2 +

1
∆y2

−1

 (31)

A limit imposed by rotation is
 ∆tI <

1
f

 =
1

2Ω sin Φ
 (32)

where AH is the horizontal diffusivity, Ω is the angular velocity of the earth and Φ is the
latitude. (31) and (32) are, however, not restrictive compared to (29) and (30).

5. pom2k.c
 Common block definitions are contained in the file, pom2k.c. The file is then
"included" in each subroutine.

6. program pom2k and the external mode
 The main program, pom2k, contains model initialization and, subsequently,
internal mode time stepping via the index, iint. All of the internal mode (three-
dimensional) subroutines, advq, profq, advu, profu, advv, profv, advt (for temperature or
salinity), proft (for temperature or salinity) and dens are called once for each value of iint
= 1 to iend.
 Imbedded in the iint loop (which terminates at S.N. 9000) is the external mode
iext loop which cycles isplit times. Note that dti/dte = isplit. The external mode solves
for the vertically mean velocities and surface elevation using the density created by the
internal mode which is held constant throughout the many external mode, time steps.
 The advective and horizontal diffusion terms in the external model are calculated
by vertical integration of the corresponding internal terms, advx and advy, created in
subroutine advct. The latter are available every internal time step. However, they are
updated by virtue of similar terms (but derived from the mean velocity) in subroutine
advave. We find that this need not be done every external time step to maintain a stable

 23

calculation. subroutine advave which calculates these terms are called at intervals of
ispadv; a typical value is ispadv = 5.

7. subroutine advave
 This subroutine calculates the advective and horizontal diffusion terms for the
external mode calculation contained in equations (18) and (19). If mode = 2, it also
calculates the bottom friction from a quadratic drag equation; otherwise, in the standard
three dimensional calculation, the bottom friction is determined by profu and profv quite
naturally as a byproduct of the bottom boundary layer.

8. subroutine advt
 This subroutine solves equation (24) for temperature or salinity (or any other scalar
variable) which are labeled F internally. D~ has been set to Dn+1. The operator, Adv(F),
is written in the form of equation (26). As shown in the code listing, horizontal advective
transports through the faces of the grid elements are computed in the form, d*u*f*dy and
d*v*f*dx, using appropriate cell averages. Note that, in the code listing, dt is simply the
external value, d, averaged over the internal time step. To the advective fluxes are added
the horizontal diffusion fluxes. Before this occurs, tclim is subtracted from the actual
temperature [see Mellor and Blumberg, 1986, and discussion after equation (12a, b)].
Then, the diffusion terms will (gently) drive the calculated field back to climatology. As
resolution improves, the diffusion terms decrease as dx*dy decreases. The vertical
advective flux divergence is determined (and temporally stored in ff) and then combined
with the horizontal transport divergence. Finally, the time step is executed and the new
value is stored in ff.

9. subroutine proft
 This subroutine solves (25) for temperature and salinity. We use the method
described on p.198-201 of Richtmeyer and Morton (1967). The procedure here will be a
model for u,v,q2 and q2l in which case the radiation term in (25) is either null or is
replaced by source/sink turbulence terms. Subroutine proft as well as advt can be used to
solve for other geochemical constituents besides temperature and salinity.
 First, finite difference (25) with respect to σ [We note that 1~ += nDD ; the choice
is irrelevant so long as the same value of D~ is used in (24) and (25)]. Thus, with
reference to the elevation view of Fig. 5,

() ()







−−−− +− 1kk

k

1+k
k1k

1-k

k

k
kk ff*

dzz
kh ff*

dzz
kh

*dz**2*d
dti2 = f~ f

 24

[]1kk
k

radrad
dz*d

dt2
+−− (9-1)

where dzk = zk - zk+1 , dzzk = zzk - zzk+1 and fk represents either temperature or salinity.
In the above, we use subscripts for k instead of parenthetical enclosure to save space; we
also omit the i, j indicies.

Solution Technique
 Equation (9-1) can now be written as

 () kk1-kkkkk1+k d = c*f 1 c + a* f + a* f −−− (9-2)

where

kk

1+k
k dzz * dz * *2*d

kh * dti2 = a − (9-3a)

1-kk

k
k dzz * dz * 2**d

kh * dti2 = c − (9-3b)

[]1kk
k

kk radrad
dz*d

dti2f~ = d +−+− (9-3c)

Now assume a solution of the form

 k1+kk k gg + f *ee= f (9-4)

Inserting fk+1 directly from (9-4) and fk-1, obtained from (9-4), into (9-2) and collecting
coefficients of fk and 1 yields

 () 1 e1*c + a
a = ee

1-kkk

k
k −−

 (9-5a)

 () 1ee1*c + a
d gg*c = gg

1-kkk

k1-kk
k −−

+ (9-5b)

The way the system works is as follows: All ak's, ck's and dk's are calculated from (9-
3a,b,c). Surface boundary conditions, discussed below, provide ee1 and gg1 and all of
the necessary eek's and ggk's are obtained from the descending (as k increases towards
the bottom) recursive relations (9-5a,b). Bottom boundary conditions provide fkb-1 where
kb-1 is the grid point nearest the bottom. Thereafter all of the fk's may be obtained from
the ascending recursive relation (9-4).

 25

Short Wave Radiation
 To specify the short wave radiation, we use the classification of Jerlov(1976) as
interpreted by Paulson and Simpson (1977), Thus,

))d/ad2*exp(z*r)-(1d/ad1)*exp(z*(r*swrad = rad kkk + (9-6)

where r, ad1 and ad2 are functions of ntp such that
 ntp 1 2 3 4 5
 Jerlov type I Ia Ib II III
 r 0.58 0.62 0.67 0.70 0.78
 ad1 (m) 0.35 0.60 1.0 1.5 1.4
 ad2 (m) 23.0 20.0 17.0 14.0 7.9

Surface and Bottom Boundary Conditions
 To apply the surface boundary conditions where the surface flux is prescribed
(prescribing the surface temperature is much simpler since ee1 = 0, gg1 = fsurf) begins
with (9-1) where for k=1

 ()211
1

11 ffa + wtsurf
dz*d

dti2 = f f −−−

Using (9-4) to eliminate f2 and collecting coefficients of f1 and 1 yields

1a
a = ee

1

1
1 −

 (9-7a)









−








−

1a
1*f~

dz*d
wtsurf*dt2 = gg

1
1

1
1 (9-7b)

At the bottom, we specify zero heat flux. A repeat of the above procedure leads to

1-)ee-(1*c
f~ gg*c = f

2-kb1-kb

1-kb2-kb1-kb
1-kb

−
 (9-8)

 26

 Four different surface boundary conditions can be selected by choosing the
appropriate nbc parameter when calling proft:

nbc=1 - surface BC is wtsurf or wssurf (heat or salt flux BC)
nbc=2 - surface BC is wtsurf+swrad (heat flux and short wave radiation penetration)
nbc=3 - surface BC is tsurf or ssurf (SST or SSS BC)
nbc=4 - surface BC is tsurf+swrad (SST and short wave radiation penetration)

 Note that wtsurf and swrad are negative when water column is warming.
(To transfer values of heat flux given in Wm-2 to wtsurf in K m s-1, divide by the factor
4.1876x106).

10. subroutine baropg
 This subroutine calculates the baroclinic, vertical integrals involving density in
equation (3) and (4) after the equations have been written in finite volume form.
 We note the fact that, in the code, rmean=MEANρ has been subtracted from
ρ before the integrals are calculated. ρMEAN is the basin area average density which is
mapped onto the sigma-grid just as the initial conditions were similarly mapped This
procedure removes most of the truncation error in the transformed baroclinic terms which
arise due to the subtraction of the two large terms involving
∂ρ / ∂x and D−1 ∂D ∂x()σ∂ρ / ∂σ in (3) and similarly in (4).

11. subroutines advct, advu and advv
 advct calculates the horizontal advection (including curvature terms) and the
diffusion parts of (3) and (4) which are differenced in the manner of equation (27) and
saved as advx and advy. These terms are vertically integrated and saved as adx2d and
ady2d for use in the external mode calculation in program main. Originally, advct had
been incorporated in advu and advv. However, it was determined by Oregon State
University colleagues that advancing the calculation of horizontal advection terms (see
Figure 2) for use in the external mode increased the model's intrinsic stabillity.

12. subroutines profu and profv
 These subroutines are virtually identical to subroutine proft. However, the
bottom boundary conditions are obtained from equations (14c,d,e).

 27

13. subroutine advq
 This subroutine is very similar to all the other "adv-" subroutines in that it
calculates the advective terms for the the turbulence quantities, q2 and q2l.

14. subroutine profq
 This subroutine first solves for the vertical part of the equations (7) and (8) for q2
and q2l in the manner of equation (25). The numerical procedure is the same as
subroutine proft. The turbulence closure scheme as described by Mellor and
Yamada(1982) is contained in this subroutine. A somewhat simplified version of the
level 2 1/2 model is used here and is discussed in Galperin et al (1988) and Mellor
(1989). A recent correction to the model is presented by Mellor (2001)
 The vertical diffusivities, KM and KH, are defined according to

 KM = ql SM (14-1a)

 KH = ql SH (14-1b)

The coefficients, SM and SH, are functions of a Richardson number given by

SH [1 − (3A2B2 + 18A1A2)GH] = A2[1 − 6A1 / B1] (14-2a)

SM [1 − 9A1A2GH] − SH [(18A12 + 9A1A2)GH] = A1[1 − 3C1 − 6A1 / B1] (14-2b)

where









−

z
p

cz
g

q
G

so
H ∂

∂
∂
∂ρ

ρ 22

2 1 = l (14-2c)

is a Richardson number. The five constants in (14-2a,b) are mostly evaluated from near
surface turbulence data (law-of-the-wall region) and are found (Mellor and Yamada,
1982) to be (A1, B1, A1, B2, C1) = (0.92, 16.6, 0.74, 10.1, 0.08). The stability functions
limit to infinity as GH approaches the value, 0.0288, a value larger than one expects to
find in nature.The quantity, cs2, in the square brackets of (14-2c) is the speed of sound
squared. In the code the vertical pressure gradient is obtained from the hydrostatic
relation,of course, but here, the density is taken as a constant consistent with the pressure
determination in subroutine dens; i.e., ∂p / ∂z = − ρog

 28

15. subroutine vertvl
 This short subroutine integrates equation (2) to obtain the sigma coordinate
transformed "vertical velocity" which, actually, is the velocity normal to sigma surfaces.
Occasionally, check w(i, j, kb); if all is well, the code should yield very small values
(~ 1011). If there is to be a surface throughflow of (usually fresh) water, then w(i,j,1) =
vflux(i,j) 0≠

16. subroutine bcond
 Lateral boundary conditions contiguous to coastlines are handled automatically
by the masks dum, dvm and fsm. They set to zero the velocities normal to land
boundaries. The landward tangential velocities in the horizontal friction terms are also set
to zero. For a sigma coordinate system, the latter is of little importance since the
minimum water depth next to the coast can be quite shallow so that bottom friction
dominates over lateral friction. We often set the minimum depth at 10 m, but smaller
values are possible. For example, where tides are present, negaative values of d are to be
avoided
 Open boundaries are considerably more demanding and uncertain and there is a
need for boundary condition specification for both the external and internal modes.
 Table A collects a variety of open boundary conditions; they are by no means
inclusive. If (A - 1) is used around all open boundaries, then it is necessary to insure that
the horizontal integral of BC around the boundary is zero; otherwise, the average basin
elevation can increase or decrease, possibly disastrously. This can also happen with the
exclusive use of (A - 4).
 Calculations do not seem overly sensitive to the velocity component tangential to
the boundary, at least for low Rossby number flows. We often set it to zero; alternatively
advective boundary conditions similar to (B - 3) have been used.

 29

Table A: A list of possible external mode open boundary conditions. In the formulations, ce = gH .
The variable BC is user specified and may be equated to the left sides of (A-1) to (A-3) where U and η
are known a priori. The right sides of (A-4) and (A-5) need not necessarily be zero. This table has been
greatly augmented from the original by Peter Holloway (School of Geography and Oceanography, University
College, University of New South Wales, Australian Defence Force Academy, Australia) and edited by George
Mellor. The table does not exhaust the list of possible boundary conditions. Please report errors.

Formula Boundary Code
 Inflow condition:
 DU = BC
 (A -1)

EAST

uaf(im,j) = 2*bc(j)/(h(im,j)+elf(im,j) + h(imm1,j +elf(imm1,j))
elf(im,j) = elf(imm1,j)
vaf(im,j) = set1

 WEST

uaf(2,j) = 2*bc(j)/(h(1,j)+elf(1,j) + h(2,j)+elf(2,j))
elf(1,j) = elf(2,j)
vaf(1,j) = set

 NORTH

vaf(i,jm) = 2*bc(i)/(h(i,jm)+elf(i,jm) + h(i,jmm1) + elf(i,jmm1))
elf(i,jm) = elf(i,jmm1)
uaf(i,jm) = set

 SOUTH

vaf(i,2) = 2*bc(i)/(h(i,1)+elf(i,1) + h(i,2)+elf(i,2))
elf(i,1) = elf(i,2)
uaf(i,1) = set

 Elevation condition:
η = BC
 (A - 2)

EAST

elf(imm1,j) = bc(j)
elf(im,j) = elf(imm1,j) cosmetic
uaf(im,j) = uaf(imm1,j)
vaf(im,j) = set

 WEST

elf(2,j) = bc(j)
uaf(2,j) = uaf(3,j)
vaf(1,j) = set

 NORTH

elf(i,jmm1) = bc(i)
elf(i,jm) = elf(i,jmm1) cosmetic
vaf(i,jm) = vaf(i,jmm1)
uaf(i,jm) = set

 SOUTH

elf(i,2) = bc(i)
vaf(i,2) = vaf(i,3)
uaf(i,1) = set

1 We use "set" to denote the prescription for the along-boundary component of velocity. If it is a
known value then that value can be used. More often it is not known and the value, 0, is used.

 30

Radiation:
HU ± ceη = BC 2
 (A-3)

EAST

uaf(im,j) = sqrt(grav/h(imm1,j))* el(imm1,j) + bc(j)
elf(im,j) = elf(imm1,j)
vaf(im,j) = set

 WEST

uaf(2,j) = - sqrt(grav/h(2,j))* el(2,j)+bc(j)
elf(1,j) = elf(2,j)
vaf(1,j) = set

 NORTH

vaf(i,jm) = sqrt(grav/h(i,jmm1))* el(i,jmm1) + bc(i)
elf(i,jm) = elf(i,jmm1)
uaf(i,jm) = set

 SOUTH

vaf(i,2) = - sqrt(grav/h(i,2))* el(i,2)+bc(i)
elf(i,1) = elf(i,2)
uaf(i,1) = set

Radiation:
∂U
∂ t

± ce
∂U
∂x

= 0

 (A-4)

EAST

gae = dte*sqrt(grav*h(im,j))/dx(im,j)
uaf(im,j) = gae*ua(imm1,j) + (1.-gae)*ua(im,j)
elf(im,j) = elf(imm1,j)
vaf(im,j) = set

 WEST

gae = dte*sqrt(grav*h(2,j))/dx(2,j)
uaf(2,j) = gae*ua(3,j) + (1.-gae)*ua(2,j)
elf(1,j) = elf(2,j)
vaf(1,j) = set

 NORTH

gae = dte*sqrt(grav*h(i,jm))/dy(i,jm)
vaf(i,jm) = gae*va(i,jmm1) + (1.-gae)*va(i,jm)
elf(i,jm) = elf(i,jmm1)
uaf(i,jm) = set

 SOUTH

gae = dte*sqrt(grav*h(i,2))/dy(i,2)
vaf(i,2) = gae*va(i,3) + (1.-gae)*va(i,2)
elf(i,1) = elf(i,2)
uaf(i,1) = set

 Table B are open boundary conditions for the internal mode.As in the external
mode, the choice for the normal velocities is unclear. One might presume that (B - 2) is to
be preferred over (B - 1) since internal waves can pass through the boundary with little
reflection. In some applications, that may be the case. However, we have seen cases
(open boundaries with substantial inflows) where the "freedom" of (B - 2) can set up
unphysical, but numerically valid, baroclinic structures interior to the boundary.

2 The boundary forcing can be set to known values approximately balancing the left side; e. g., on the
east, bc(j) = uabe(j)-sqrt(grav/h(imm1,j))* ele(j) where uabe(j) and ele(j) are specified values.

 31

Radiation:
∂η
∂ t

± ce
∂η
∂x

= 0

 (A-5)

EAST

gae = dte*sqrt(grav*h(imm1,j))/dx(imm1,j)
elf(imm1,j) = gae*el(imm2,j) + (1.-gae) *el(imm1,j)
elf(im,j) = elf(imm1,j)
uaf(im,j) = uaf(imm1,j)
vaf(im,j) = set

 WEST

gae = dte*sqrt(grav*h(2,j))/dx(1,j)
elf(2,j) = gae*el(3,j) + (1.-gae)*el(2,j)
uaf(2,j) = uaf(3,j)
vaf(2,jm) = set

 NORTH

gae = dte*sqrt(grav*h(i,jmm1))/dy(i,jmm1)
elf(i,jmm1) = gae*el(i,jmm2) + (1.-gae) *el(i,jmm1)
elf(i,jm) = elf(i,jmm1)
vaf(i,jm) = vaf(i,jmm1)
uaf(i,jm) = set

 SOUTH

gae = dte*sqrt(grav*h(i,2))/dy(i,2)
elf(i,2) = gae*el(i,3) + (1.-gae)*el(i,2)
vaf(i,2) = vaf(i,3)
uaf(i,1) = set

 Cyclic (A-6) EAST
(I=IM)

elf(im,j) = elf(3,j)
uaf(im,j) = uaf(3,j)
vaf(im,j) = vaf(3,j)

 WEST
(I=1)

elf(1,j) = elf(imm2,j)
elf(2,j) = elf(imm1,j)
uaf(2,j)=uaf(imm1,j)
vaf(2,j)=vaf(imm1,j)

 NORTH
(J=JM)

elf(i,jm) = elf(i,3)
uaf(i,jm) = uaf(i,3)
vaf(i,jm) = vaf(i,3)

 SOUTH
(J=1)

elf(i,1) = elf(i,jmm2)
elf(i,2) = elf(i,jmm1)
uaf(i,2)=uaf(i,jmm1)
vaf(i,2)=vaf(i,jmm1)

 The finite difference expression one gets for the EAST version of (B - 2) is

Uim
n+1 = γUim−1

n + (1 − γ)Uim
n ; γ ≡ ci∆ti / ∆x

where one might like ci to be the gravest mode, baroclinic phase speed. However, it is
assumed that: a) the user has found and is using a ∆ti such that the maximum value of γ
is near unity, corresponding approximately to the maximum depth and b) that ci is
proportional to H . This is a seemingly crude approximation, but may perform fairly
well; it at least guarantees that 0 < γ ≤1.

 32

TABLE B: A list of internal mode variables to be set on open lateral boundaries and
example boundary conditions. Note that UF and VF are used for the forward time step of
U and V, T and S, and Q2 and Q2L. The variables TBE, TBW, TBN, TBS (and similar
variables for salinity) are supplied by the user

Formula Boundary Code

Inflow condition:

EAST

uf(im,j,k) = bc(j,k)
vf(im,j,k) = set

U = BC WEST

uf(2,j,k) = bc(j,k)
vf(1,j,k) = set

 (B-1) NORTH

vf(i,jm,k) = bc(i,k)
uf(i,jm,k) = set

 SOUTH

vf(i,2,k) = bc(i,k)
uf(i,1,k) = set

Radiation:
∂U
∂t

± ci
∂U
∂x

= 0

EAST

gai = sqrt(h(im,j)/hmax)
uf(im,j,k) = gai*u(imm1,j,k) + (1.-gai)*u(im,j,k)
vf(im,j,k) = set

 (B-2) WEST

gai = sqrt(h(2,j)/hmax)
uf(2,j,k) = gai*u(3,j,k) + (1.-gai)*u(2,j,k)
vf(1,j,k) = set

 NORTH

gai = sqrt(h(i,jm)/hmax)
vf(i,jm,k) = gai*v(i,jmm1,k) + (1.-gai)*v(i,jm,k)
uf(i,jm,k) = set

 SOUTH

gai = sqrt(h(i,2)/hmax)
vf(i,2,k) = gai*v(i,3,k) + (1.-gai)*v(i,2,k)
uf(i,1,k) = set

Upstream advection
on T or S:

EAST

uf(im,j,k) = t(im,j,k) -dti/(dx(im,j)+dx(imm1,j)) * ((u(im,j,k) +
abs(u(im,j,k))) * (t(im,j,k)-t(imm1,j,k)) + (u(im,j,k) - abs(u(im,j,k))) *
(tbe(j,k)-t(im,j,k)))

∂T
∂ t

+U
∂T
∂x

= 0 WEST

uf(1,j,k) = t(1,j,k) -dti/(dx(1,j)+dx(2,j)) * ((u(1,j,k) + abs(u(1,j,k))) *
(t(1,j,k)-tbw(j,k)) + (u(1,j,k) - abs(u(1,j,k))) * (t(2,j,k)-t(1,j,k)))

 (B-3) NORTH

uf(i,jm,k) = t(i,jm,k) -dti/(dy(i,jm)+dy(i,jmm1)) * ((v(i,jm,k) +
abs(v(i,jm,k))) * (t(i,jm,k)-t(i,jmm1,k)) + (v(i,jm,k) - abs(v(i,jm,k))) *
(tbn(i,k)-t(i,jm,k)))

 SOUTH

uf(i,1,k) = t(i,1,k) -dti/(dy(i,1)+dy(i,2)) * ((v(i,1,k) + abs(v(i,1,k))) *
(t(i,1,k)-tbs(i,k)) + (v(i,1,k) - abs(v(i,1,k))) * (t(i,2,k)-t(i,1,k)))

Cyclic (B-4) Much the same as (a - 6) except replace uaf with uf, etc. and t, s, q2 and
q2l are handled similar to elf.

 33

17. subroutine dens
 The UNESCO equation of state, as adapted by Mellor(1991) is used. The in situ
density is determined as a function of salinity, potential temperature and pressure; the
latter is approximated by the hydrostatic relation and constant density. Initially, the
values tbias and sbias are subtracted from temperature and salinity to reduce round-off
error. With 32 bit arithmatic, a suggestion is tbias = 10. and sbias = 35. for open ocean
models; with 64 bits, zero values are appropriate. In dens, these values are added again
before the density is calculated. The actual density is normalized on 1000 kg/m2. Since
only gradients are needed (in subroutines baropg and profq), the value 1.025 is subtracted
to reduce round-off error. APPENDIX A includes some discussion of thermodynamics.

18. subroutine slpmin
 This subroutine examines the topography and adjusts H(I,J) so that the difference
of the depths of any two adjacent cells divided by the sum of the depths is less than or
equal to the parameter, SLMIN. In the process, volume is preserved. What generally
happens is that the topography in deeper water is not changed whereas the shallower
regions are altered depending on resolution.

19. utililty subroutines
 There are a number of utility subroutines supplied with the program. For the most
part they can be understood by reference to comments written into the code. All of the
printing subroutines print out numbers in floating point or integer format. They accept a
scale factor in the argument list which is either zero, in which case the code generates its
own scale factor, or a finite value which is then used to scale the printed numbers. If the
scale factor is negative, the output is floating point.

20. PROGRAM CURVIGRID
 The program is set up to accept values of longitude and latitude, here denoted by
x and y to define the four edges of the gridded domain. This can be altered to
accommodate rectilinear coordinates by setting the cosine of the latitude, CS = 1, in
subroutine ORTHOG or by expunging the variable completely.
 The border of the domain is determined by NB, NR or NL points on the J=1, I=1
and J=JM borders respectively. In this version of the program, DATA statements contain
this information. Cubic splines are then used to fill in the missing border coordinates.

 34

 The program is comprised of two steps:
 I. The interior grid points (1 < J < JM) are filled such that the values at every I
column is distributed proportionately to the y-values at I=1; the interior x value are
similarly distributed.
 II. Subroutine ORTHOG is called to render the xi,j and yi,j an orthogonal
coordinate system. Then, use is made of the orthogonality conditions

∂x
∂s



 




j
 = -

∂y
∂s



 




i
 ,

∂y
∂s



 




j
 =

∂x
∂s



 




i
 (20-1a,b)

or

δ jx
δ j s

 = -
δ i y
δi s

,
δ j y
δ js

 =
δi x
δ is

 (20-2a,b)

With reference to Fig. 6, (20-2a,b) are solved according to

 xi, j - xi, j-1 =
δ js
δis

[yi+1, j - yi-1, j + yi+1, j-1 - y1,j -1] (20-3a)

 yi,j - yi,j -1 =
δ js
δi s

[xi+1, j - xi-1, j + xi+1,j -1 - x1, j-1] (20-3b)

 where

δi s =

1
4

[(xi+ i, j - xi, j)
2 + (yi+1, j - yi1, j)

2]1/2

 +
1
4

[(i+1, j-1 - xi-1, j-1)2 + (yi+1,j -1 - yi-1, j-1)2]1/2
 (20-4a)

 δ js = [(xi, j - xi, j-1)2 + (yi,j - yi,j -1)2]1/2 (20-4b)

The factor, CS, the cosine of the latitude, is not included in (20-3a,b) and (20-4a,b) but is
included in the corresponding code in ORTHOG. Now, the above equations are interated
many times during which δjs is fixed; i.e., δjs , xi,1 and yi,1 are data of the initial field
specified in step I which are retained. In the course of iteration, δjs , xi,j and yi,j are
reevaluated. The shape of the original domain does change but not greatly. During this
iteration, CS is held fixed. In fact, CS changes very little so that ORTHOG is called only
twice to converge on this factor.
 It should be noted that, if the border points contain too much curvature, then the
curves normal to the i = constant curves can focus to a point at some j row after which
the calculation is nonsense. Some trial and error is therefore required. A way to avoid
this is to call POISSON after step I which solves for yi,j according to

 35

∂2 y / ∂2i + ∂2y / ∂2 j = 0. This avoids the focusing problem but may not yield the most
desirable grid.

j

j

j -
1

i

i

i +1

i -1

Figure 6. The orthogonal curvilinear grid system.

 A good practice is to map the bottom topography on to the grid, then calculate the
CFL limiting time step for each grid point; one wishes, of course, to avoid overly small
steps.

 An alternate and more sophisticated grid generating code can be found in grid.f
and sepelli.f in the directory, contrib_code, in our ftp site. However, there is as yet no
documentation for grid.f.

APPENDIX A: Note on the Equation of State, Potential Temperature and Static
Stability

 Two equations of state for density are

 ρ = ρ1(T ,S, p) (A-1)

 ρ = ρ2(Θ ,S, p) (A-2)

where T is in situ temperature and Θ is the potential temperature. In the model, (A-2) is
used. To relate potential temperature, Θ, to in situ temperature, T, recall the
thermodynamic relation for entropy.

Tdη = dh -
dp
ρ

 - µdS (A-3)

 36

where η is the entropy, h, enthalpy and µ the chemical potential for salt taken here as a
single average constituent. Furthermore,

 dh = CpdT + (1 - αT)
dp
ρ

 (A-4)

where we have set

∂h
∂T



 




p,S
≡ Cp ,

∂h
∂p









T,S
=

(1− αT)
ρ

 (A-5a, b)

and where the coefficient of thermal expansion is

 α ≡ −
1
ρ

∂ρ
∂T



 




p
 (A-5c)

We note that (A-5b) has been obtained from (A-3) and one of Maxwell's relations.
Combining (A-3) and (A-4), we have

 dη = Cp
dT
T

 - α
dp
ρ

 -
µdS
T

 (A-6)

The definition of potential temperature in oceanography* is

ρ

α dp
T
dTCdC ppo - ≡

Θ
Θ

 (A-7)

where Cp = Cp (T,S,p) and Cpo = Cp (T,S,0). Combining (A-6) and (A-7),

 dη = Cpo
dΘ
Θ

 -
µdS
T

 (A-8)

For processes where heat transfer, viscous dissipation and salt diffusion are null, DΘ/Dt
= DS/DT = 0; then, from (A-8), Dη/Dt = 0; i.e. the process is isentropic. An integral
relation obtained from (A-7) is

* as contrasted to meteorology, where, for a perfect gas, we have αT = 1 and p = ρRT.
Potential temperature is then defined as dΘ/Θ = dη/Cp = dT/T - (R/Cp)dp/p which can be
integrated exactly to give Θ = T(po/p)R/Cp ; po is a reference pressure where Θ = T.

 37

 T(z) − Θ =
′ α ′ T
′ C pp

o
∫

d ′ p
′ ρ

 = −
′ α ′ T g
′ C pz

o
∫ d ′ z (A-9)

The hydrostatic pressure relation is used to obtain the second expression on the right of
the equal sign. In (A-9), Θ(z) = Θ(0) = T(0). For T = 10oC, S = 35 psu and p = 0, one
finds (Gill, 1982, p.603) that αTg / Cp ≅ 0.12K / 1000m . Equation (A-9) allows one to
initialize potential temperature in the model given in situ properties. An algorithm to do
this is provided by Bryden (1973).

Static Stability
 To conveniently provide further background information and also inquire into an
aspect of the Boussinesq approximation, we review the following equations for two-
dimensional isentropic flow (see also Mellor and Ezer, 1995, for evaluation of a non-
Boussinesq version of POM).

∂ ˜ u
∂x

 +
∂ ˜ w
∂z

 = 0 (A-10)

 ˜ ρ
∂ ˜ u
∂ t

 + ˜ u ⋅ ∇ ˜ u




 = -

∂ ˜ p
∂x

 (A-11)

˜ ρ

∂ ˜ w
∂ t

 + ˜ u ⋅ ∇ ˜ w


 


 = −

∂ ˜ p
∂z

 − ˜ ρ g (A-12)

where we have made the Boussinesq approximation in (A-10) but have not done so in
(A-11) and (A-12). Equation (A-10) is justified by examination of the full equation
∇.u + ˜ ρ −1D ˜ ρ / Dt = 0. The first term scales like uo/L whereas the second scales as
(uo/L)δ ˜ ρ / ˜ ρ Since δ ˜ ρ / ˜ ρ < .05 in the ocean, the second term can be neglected.
 Let mean quantities be denoted by upper case letters and fluctuating quantities by
lower case letters; the exception to this is density where ρ and ρ' are the mean and
fluctuating values. For this analysis the mean velocity will be zero. Therefore we have
(˜ u , ˜ w) = (u,w), ˜ p = P + p , ˜ ρ = ρ + ′ ρ , ∂P / ∂z = −ρg and ρ = ρ(z) so that, for small
perturbations,

∂u
∂x

 +
∂w
∂z

 = 0 (A-13)

 ρ
∂u
∂ t

 = -
∂p
∂x

 (A-14)

 38

 ρ
∂w
∂ t

 = -
∂p
∂z

 - ′ ρ g (A-15)

Now for isentropic flows the equations of state yields D ˜ ρ / Dt = c−2D˜ p / Dt where
c2 ≡ (∂˜ p / ∂˜ ρ)Θ,S is the speed of sound squared. The corresponding density perturbation

equation is

∂ ′ ρ
∂t

+ w
∂ρ
∂z

=
1
c2 w

∂p
∂z

+
∂p
∂ t



 




or
∂ ′ ρ
∂t

− w
ρN2

g
=

1
c2

∂p
∂ t

 (A-16)

where

 ρ
N2

g
≡ -

∂ρ
∂z

 +
1
c2

∂p
∂z

 = -
∂ρ
∂z

 -
ρg
c2 (A-17)

N2 is the Brunt-Vassala frequency squared or the static stability. If one eliminates u, p
and ρ' from (A-13) to (A-16), the resulting equation for w is

∂2

∂t2
∂2w
∂z2 +

∂2w
∂x2 +

N2

g
∂w
∂z



 


  + N2 ∂2w
∂x2 = 0 (A-18)

The last term in the square brackets can be neglected compared with the first. To check
this, let g-1N2wz/wzz ~ g-1N2Lz where Lz is the vertical scale height. g-1 N2Lz has two
parts as shown in (A-17). If we take Lz ≈ 1000m, then the first part, ρ−1ρzLz ≈ - .010
and the second part, c-2gLz ≈ .005. Tracing back through the original equations, we find
that this approximation is equivalent to setting ρ = constant = ρo in (A-14) and (A-15)
and neglecting the right side of (A-16).
 A solution to (A-18) for N2 = constant is w ∝ exp i(lz + kx − σt)[]where the
dispersion relation is σ2 = N2k2 / (l2 + k2) . If N2 < 0, the flow is unstable; if N2 > 0,
the flow is stable. Thus, N2, given by (A-17) is the correct static stability parameter for
use in the turbulence closure model which are constructed from perturbation equations
like (A-16) together with other equations and terms.

 39

 References

Andre, J. C., G. DeMoor, G. Therry, and R. DuVachat, Modeling the 24-hour evolution
of the mean and turbulence structures of the planetary boundary layer, J. Atmos. Sci., 35,
1861-1863, 1978.

Asselin, R., Frequency filters for time integrations, Mon. Weather Rev., 100, 487-490,
1972.

Baringer, M. O., and J. F. Price, Mixing and spreading of the Mediterranean outflow, J.
Phys. Oceanogr., submitted, 1996.

Blumberg, A. F.,and G. L. Mellor, A coastal ocean numerical model, in Mathematical
Modelling of Estuarine Physics, Proc. Int. Symp., Hamburg, Aug. 1978, edited by J.
Sunderman and K.-P. Holtz, pp.203-214, Springer-Verlag, Berlin, 1980.

Blumberg, A.F., and G.L. Mellor, Diagnostic and prognostic numerical circulation
studies of the South Atlantic Bight, J. Geophys. Res., 88, 4579-4592, 1983.

Blumberg, A.F., and G.L. Mellor, A description of a three-dimensional coastal ocean
circulation model, in Three-Dimensional Coastal Ocean Models, Vol. 4, edited by
N.Heaps, pp. 208, American Geophysical Union, Washington, D.C., 1987.

Bryden, H. L., New polynomials for thermal expansion, adiabatic temperature gradient,
and potential temperature of sea water, Deep-Sea Res., 20, 401-408, 1973.

Ezer, T., H. Arango and A. F. Shchepetkin, Developments in terrain-following ocean
models: intercomparison of numerical aspects, Ocean Modelling, 4, 249-267.

Galperin, B., L. H. Kantha, S. Hassid, and A. Rosati, A quasi-equilibrium turbulent
energy model for geophysical flows, J. Atmos. Sci., 45, 55-62, 1988.

Gill, A.E., Atmosphere-Ocean Dynamics, 662 pp., Academic Press, New York, 1982.

Jerlov, N. G., Marine Optics, 14, 231 pp., Elsvier Sci. Pub. Co., Amsterdam, 1976.

 40

Jungclaus, H., and G. L. Mellor, A three-dimensional model study of the Mediterranean
out flow, J. Mar. Systems, submitted, 1996.

Klein, P., A simulation of the effects of air-sea transfer variability on the structure of the
marine upper layers, J. Phys. Oceanogr., 10, 1824-1841, 1980.

Knudsen, M., Hydrographical Tables. G.E.C. Gad, Copenhagen, pp., Williams and
Norgate, London, 19010.

Madala, R. V., and S. A. Piacsek, A semi-implicit numerical model for baroclinic oceans,
J. Comput. Phys., 23, 167-178, 1977.

Martin, P.J., Simulation of the mixed layer at OWS November and Papa with several
models, J. Geophys. Res., 90, 903-916, 1985.

Mellor, G.L., and T. Yamada, Development of a turbulence closure model for
geophysical fluid problems, Rev. Geophys. Space Phys., 20, 851-875, 1982.

Mellor, G. L., Retrospect on oceanic boundary layer modeling an second moment
closure, Hawaiian Winter Workshop on "Parameterization of Small-Scale Processes",
January 1989, University of Hawaii, Honolulu, Hawaii, 1989.

Mellor, G.L., Analytic prediction of the properties of stratified planetary surface layers.,
J. Atmos. Sci., 30, 1061-1069, 1973.

Mellor, G.L., and A.F. Blumberg, Modeling vertical and horizontal diffusivities with the
sigma coordinate system, Mon. Wea. Rev, 113, 1380-1383, 1985.

Mellor, G.L., and T. Yamada, A hierarchy of turbulence closure models for planetary
boundary layers, J. Atmos. Sci., 31, 1791-1806, 1974.

Mellor, G. L., L. H. Kantha, and H. J. Herring, On Gulf Stream frontal eddies. A
numerical experiment, Ocean Modelling, 68, 7-11, 1986.

Mellor, G.L., An equation of state for numerical models of oceans and estuaries. J.
Atmos. Oceanic Tech. 8, 609-611, 1991.

 41

Mellor, G. L., T. Ezer and L. Y. Oey, The pressure gradient conundrum of sigma
coordinate ocean models, J. Atmos. Oceanic. Technol., 11, 1126-1134, 1994.

 Mellor, G. L. and T. Ezer, Sea level variations induced by heating and cooling: An
 evaluation of the Boussinesq approximation in ocean model, J. Geophys. Res.,
 100(C10), 20,565-20,577, 1995.

Mellor, G. L., and X. H. Wang, Pressure compensation and the bottom boundary layer, J.
Phys. Oceanogr., in press, 1996.

Mellor, G. L., L.-Y. Oey and T. Ezer, Sigma coordinate gradient errors and the seamount
problem. J. Atmos. Oceanic. Technol., 12, 1122-1131, 1998.

Mellor, G. L., One-dimensional, ocean surface modeling, a problem and a solution. J.
Phys. Oceanogr., 31, 790-809, 2001.

Oey, L.-Y., G.L. Mellor, and R.I. Hires, A three-dimensional simulation of the Hudson-
Raritan estuary. Part I: Description of the model and model simulations, J. Phys.
Oceanogr., 15, 1676-1692, 1985a.

Oey, L.-Y., G.L. Mellor, and R.I. Hires, A three-dimensional simulation of the Hudson-
Raritan estuary. Part II: Comparison with observation, J. Phys. Oceanogr., 15, 1693-
1709, 1985b.

Oey, L.-Y., G.L. Mellor, and R.I. Hires, A three-dimensional simulation of the Hudson-
Raritan estuary. Part III: Salt flux analyses, J. Phys. Oceanogr., 15, 1711-1720, 1985c.

Paulson, C. A., and J. Simpson, Irradiance measurements in the upper ocean. J. Phys.
Oceanogr., 7, 952-956, 1977.

Phillips, N. A., A coordinate system having some special advantages for numerical
forecasting, J. Meteorol., 14, 184-185, 1957.

Richtmyer, R. D., and K. W. Morton, Difference Methods for Initial-Value Problems,
2nd Ed., 405pp., Interscience, New York, 1967.

 42

Simons, T. J., Verification of numerical models of Lake Ontario. Part I, circulation in
spring and early summer, J. Phys. Oceanogr., 4, 507-523, 1974.

UNESCO. Tenth report of the joint panel on oceanographic tables and standards.
UNESCO Tech. Pap.in Marine Science No. 36. UNESCO, paris, 25pp., 1981

Zavatarelli, M., and G. L. Mellor, A numerical study of the Mediterranean Sea
Circulation, J. Phys. Oceanogr., 25, 1384-1414, 1995.

