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 Notes on a 1998 Revision This version of the users guide recognizes changes that have 
ocurred since 1991. The code itself incorporates some recent changes. the fortran names, 
tmean, smean have been changed (globally) to tclim, sclim in oder to distiquish the 
function and treatment of these variables from that of rmean. the names, trnu, trnv, have 
been changed to drx2d, dry2d and the names, advuu, advvv, to adx2d, ady2d to more 
clearly indicate their functions. Instead of a wind driven closed basin, pom97.f now 
solves the problem of the flow through a channel which includes an island or a seamount 
at the center of the domain. Thus, subroutine bcond contains active open boundary 
conditions. These illustrative boundary conditions, however, are one set of many 
possibilities and, consequently, open boundary conditions for regional models pose 
difficult choices for users of the model. This 1998 revision contains a fuller discussion of 
open boundary conditions in section 16. 
     
Notes on this 2002 revision The basic code, now labeled pom2k.f results from extensive 
tidying by John Hunter which includes more comments and lower case fortran variables, 
a move which apparently renders the code “modern”. However the basic – we believe, 
well conceived - structure of the code remains unchanged. 
 
As of this revision date, October 2002, there are over 1000 POM users of record. 
 
 
 
 
 
 
    Sponsor Acknowledgment:  The development and application of the program has had 
many sponsors since 1977. They include the Geophysical Fluid Dynamics 
Laboratory/NOAA, Princeton University, Sea Grant/NOAA through the New Jersey 
Marine Sciences Consortium, the Department of Energy, Minerals Management 
Services/DOI, the National Ocean Services/NOAA, the Institute of Naval Oceanography 
and the Office of Naval Research/DOD. 
 
 
 
Web site: http://www.aos.princeton.edu/WWWPUBLIC/htdocs.pom/ 
 
 
 
Title Page Illustration: North Atlantic velocity field on the 32.45 potential density 
surface. Courtesy Dr. Sirpa Häkkinen. 
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1. INTRODUCTION 
 
     This report is documentation for a numerical ocean model created by Alan 
Blumberg and me around 1977.  Subsequent contributions were made by Leo Oey, Jim 
Herring, Lakshmi Kantha and Boris Galperin and others. In recent years Tal Ezer has 
been an important force in research using the model and in helping others to use it. 
Institutionally, the model was developed and applied to oceanographic problems in the 
Atmospheric and Oceanic Sciences Program of Princeton University, the Geophysical 
Fluid Dynamics Laboratory of NOAA and Dynalysis of Princeton. Many sponsors, as 
acknowleged above, have supported the effort. Papers that either describe the numerical 
model (Blumberg and Mellor, 1987) or made use of the model are contained in the 
Reference Section and a more complete list is available on the POM home page at  
http://www.aos.princeton.edu/WWWPUBLIC/htdocs.pom. 
 The model is oftentimes referenced as the Princeton Ocean Model (POM). The 
principal attributes of the model are as follows: 
 
o  It contains an imbedded second moment turbulence closure sub-model to provide 
vertical mixing coefficients. 
o  It is a sigma coordinate model in that the vertical coordinate is scaled on the water 
column depth. 
o  The horizontal grid uses curvilinear orthogonal coordinates and an "Arakawa C" 
differencing scheme. 
o  The horizontal time differencing is explicit whereas the vertical differencing is 
implicit.  The latter eliminates time constraints for the vertical coordinate and permits the 
use of fine vertical resolution in the surface and bottom boundary layers. 
o  The model has a free surface and a split time step.  The external mode portion of the 
model is two-dimensional and uses a short time step based on the CFL condition and the 
external wave speed.  The internal mode is three-dimensional and uses a long time step 
based on the CFL condition and the internal wave speed. 
o  Complete thermodynamics have been implemented. 
 
 The turbulence closure sub-model is one that I introduced (Mellor, 1973) and then 
was significantly advanced in collaboration with Tetsuji Yamada (Mellor and 
Yamada,1974; Mellor and Yamada,1982). It is often cited in the literature as the Mellor-
Yamada turbulence closure model (but, it should be noted that the model is based on 



 
 5 

turbulence hypotheses by Rotta and Kolmogorov which we extended to stratified flow 
cases).  Here, the Level 2.5 model is used together with a prognostic equation for the 
turbulence macroscale.  The closure model is contained in subroutines PROFQ and 
ADVQ.  A list of papers pertaining to the closure model is also included in the Reference 
section. A much more extensive list of references by user of POM is on the web site.  
 By and large, the turbulence model seems to do a fair job simulating mixed layer 
dynamics although there have been indications that calculated mixed layer depths are a 
bit too shallow (Martin, 1985). A recent paper (Melloor 2001) suggests ameliorative 
changes which are incorporated in this version. Also, wind forcing may be spatially 
smoothed and temporally smoothed. It is known that the latter process will reduce mixed 
layer thicknesses (Klein, 1980).  Further study is required to quantify these effects.  
          The sigma coordinate system is probably a necessary attribute in dealing with 
significant topographical variability such as that encountered in estuaries or over 
continental shelf breaks and slopes. Together with the turbulence sub-model, the model 
produces realistic bottom boundary layers which are important in coastal waters (Mellor, 
1985) and in tidally driven estuaries (Oey et al., 1985a, b) which the model can simulate 
since it does have a free surface. More recently, we find that bottom boundary layers are 
important for deep water formation processes (Zavatarelli and Mellor, 1995; Jungclaus 
and Mellor, 1996; Baringer and Price, 1996) and, possibly, for the maintenance of the 
baroclinicity of oceans basins (Mellor and Wang, 1996). 
     The horizontal finite difference scheme is staggered and, in the literature, has 
been called an Arakawa C-grid. The horizontal grid is a curvilinear coordinate system, or 
as a special case, a rectilinear coordinate system may be easily implemented.  The 
advection, horizontal diffusion and, in the case of velocity, the pressure gradient and 
Coriolis terms are contained in subroutines advt, advq, advct, advu, advv and advave. 
The horizontal differencing could be changed without affecting the overall logic of the 
program or the remaining subroutines. The vertical diffusion is handled in subroutines, 
proft, profq, profu and profv.  
     The specific program that is now supplied to outside users (as of June 1996) 
simulates the flow, east to west across a seamount with a prescribed vertical temperature 
stratification, constant salinity, zero surface heat and salinity flux and a zero wind stress 
distribution although wind stress may be easily applied. The program should run with no 
additional data requirements. The open boundary conditions specified in subroutine 
bcond for this problem are a sampling of many possible open boundary conditions. I 
leave it to users to invent their own problems, defined by topography, horizontal grid 
(rectilinear, where dx(i, j) is  specified as a function of i and dy(i, j) as a function of j, or 
a more general orthogonal curvilinear grid in which case dx and dy are both functions of i 
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and j), vertical sigma grid and boundary conditions. Users may need to alter program 
pom2k and subroutine bcond; in principal, there should be no need to alter any of the 
other subroutines.      
 The present program code is written in standard FORTRAN 77. There are other 
versions in existence, but we only support and maintain the single version.
 Provision has been made so that the 2-D (external mode) portion of the model can 
be run cum sole. In this case, the bottom shear stress, normally a consequence of the 3-D 
calculation and the turbulence mixing coefficient, is replaced by a quadratic drag relation. 
The code may also be run in a diagnostic mode where the thermodynamic properties are 
invariant in time.      
 Users will need to write their own code to set up their own problem dependent, 
initial conditions and lateral and surface boundary conditions. We can, however, supply 
simple subroutines that convert data for a constant z-level coordinate system to a sigma 
coordinate system and vice versa. 
 
     To access pom2k.f and other files through Internet, type ftp ftp.aos.princeton.edu; when 
prompted for your name, type anonymous; when prompted for a password, type your iternet address; after 
receiving a guest login ok, type cd pub/pom. You may list filenames with the ls command. You may 
download  with the command get filename. Type quit to terminate.  
 Alternately, check the POM web page on 
 http://www.aos.princeton.edu/WWWPUBLIC/htdocs.pom     
  

 The current code as of is called pom2k.f. To run the code, transfer pom2k.f and 
pom2k.c to a directory, compile and run. A netCDF utility, pom2k.n, is also available and 
may be downloaded to create netCDF output. 
 
2. THE BASIC EQUATIONS 
 The basic equations have been cast in a bottom following, sigma coordinate 
system which is illustrated in Figure 1. The reader is referred to Phillips (1957) or 
Blumberg and Mellor (1980,1987) for a derivation of the sigma coordinate equations 
which are based on the transformation, 
 

  x* =  x,  y* =  y,   σ =  
z - η

H + η
,  t* =  t                       (1a, b, c, d) 

 
where x,y,z  are the conventional cartesian coordinates; D ≡ H + η  where  H (x, y ) is the 
bottom topography and η(x, y, t) is the surface elevation. Thus, σ ranges from  σ = 0 at z  
= η  to  σ = -1 at z = −H. After conversion to sigma coordinates and deletion of the 
asterisks, the basic equations may be written (in horizontal cartesian coordinates), 
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η

σ =  −1

σ =  0z = 0

z = H(x,y)

 
  

 

 
Figure 1. The sigma coordinate system.  
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  Definitions of the variables are contained in section 3. Note that ω is the 
transformed vertical velocity; physically, ω is the velocity component normal to sigma 
surfaces. The transformation to the Cartesian vertical velocity is 
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  The so-called wall proximity function is prescribed according to 

  ˜ W = 1+ E2(l / kL) where L−1 = (η − z)−1 + (H − z)−1. Also, 
∂ ˜ ρ / ∂σ ≡ ∂ρ / ∂σ − cs

−2∂p / ∂σ  (see discussion of static stability in Appendix A) where 

cs is the speed of sound. Note that T is potential temperature (see Appendix A).  
 In equations (3) and (4), ρMEAN  should be subtracted from ρ  to form ′ ρ  before 
the integration is carried out in subroutine BAROPG. ρMEAN  is generally the initial 

density field which is area averaged on z-levels and then transferred to sigma coordinates 
in the exact same way as the initial density field. This procedure should reduce the 
truncation errors associated with the calculation of the pressure gradient term in sigma 
coordinate over steep topography (see Mellor et al., 1994 and Mellor et al. 1998 for 
evaluation of this error in POM). 
 The horizontal viscosity and diffusion terms are defined according to:  
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∂
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∂
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Hτ xy( )                                              (9a) 

  

Fy ≡  
∂
∂x

Hτ xy( ) +  
∂
∂y

Hτ yy( )                                              (9b) 

 
where 
 



 
 9 

       τ xx  =  2AM 
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Also, 

    Fφ ≡
∂
∂x

Hqx( ) +  
∂
∂y

Hqy( )                                            (11) 

 
where  
 

 qx ≡  AH
∂φ
∂x

 ,      qy ≡  AH
∂φ
∂y

                                    (12a,b) 

 
and where φ represents T, S, q2 or q2  l  . It should be noted that these horizontal diffusion 
terms are not what one would obtain by transforming the conventional forms to the sigma 
coordinate system. Justification for the present forms will be found in Mellor and 
Blumberg (1985) and relate to the fact that we wish to maintain a valid bottom boundary 
layer simulation  in the face of horizontal diffusion which may be large. The penalty for 
this is that (12a,b) in sigma coordinates can introduce vertical fluxes even when 
isotherms and isohalines are flat in cartesian coordinates. The remedy for this is, first, the 
use of a Smagorinsky diffusivity (see below) so that, at least when velocities are small or 
nil, so are the values of qx and qy . The second remedy is that, before executing (12a, b) 
for temperature or salinity, we first subtract TCLIM and SCLIM  which are "climatologies" 
of T and S. The latter may be true climatologies (e.g.; Levitus) or approximations such as 
temperature and salinities which are area averaged prior to transfer to sigma coordiates 
(in which case, they are treated the same as ρMEAN ). If something like a Levitus 
climatology is used, then most of the vertical component of the diffusion is removed; 
furthermore, the diffusion terms tend to slowly drive the scalars back to climatology 
rather than to a horizontally homogeneous state as in the case of z - level models. The 
third remedy is make use of small diffusivity relative to visosity. Thus, the value, 
TPRNI ≡ AH AM , can genmerally set to a small number, say 0.2, or even zero in some 
cases. 
 It should be noted that the treatment in (9a,b), (10a,b), (11) and (12a,b)allows for 
a realistic treatment of bottom boundary layers. The bottom boundary layer is important 
in tidally driven regions, in wind driven coastal regions and according to Mellor and 
Wang (1996), in deep ocean basins. 
  In (9a, b) and (11), H is used in place of D for the small algorithmic simplication 
it offers for terms whose physical significance is questionable. 
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The Smagorinsky Diffusivity 
 We generally use the Smagorinsky diffusivity for horizontal diffusion although a 
constant or biharmonic diffusion can and has been used instead.  The Smagorinsky 
formula is,      
  

                              AM =  C∆x∆y 
1
2

 ∇V +  ∇V( )T                               

 
where ∇V + (∇V)T

 /2 =[(∂u / ∂x)2 + (∂v / ∂x + ∂u / ∂y)2 / 2 + (∂v / ∂y)2 ]1/2 . Values of C  
(the HORCON parameter) in the range, 0.10 to 0.20 seem to work well, but, if the grid 
spacing is small enough (Oey et al, 1985a,b), C can be nil. An advantage of the 
Smagorinsky relation is that C is non-dimensional; related advantages are that AM  

decreases as resolution improves and that AM  is small if velocity gradients are small. 
 
Vertical Boundary Conditions. 
  The vertical boundary conditions for (2) are  
 

ω 0( ) =  ω -1( ) =  0                                                 (13a,b) 
However, if there is to be surface throughflow of (usually fresh) water, 0)0( ≠ω . 

 The surface boundary conditions for (3) and (4) are 
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where the right hand side of (14a,b) is the input values of the surface turbulence 
momentum flux (the stress components are opposite in sign). The bottom boundary 
conditions are 
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           Cz  =  MAX
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                         (14e) 

 
κ = 0.4 is the von Karman constant and zo is the roughness parameter.  Equations 
(14c,d,e) can be derived by matching the numerical solution to the "law of the wall". 
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Numerically, they are applied to the first grid points nearest the bottom.  Where the 
bottom is not well resolved, (1+σkb-1)H/zo is large and (14e) reverts to an ordinary drag 
coefficient formulation.   The boundary conditions on (5) and (6) are 
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The boundary conditions for (7) and (8) are 
 

  q
2(0),q2l (0)( ) =  B1

2/3 uτ
2(0),  0( )                                    (16a,b) 

 

  q
2(−1), q2l (−1)( ) =  B1

2/3 uτ
2(−1), 0( )                                 (16c,d) 

 
where B1 is one of the turbulence closure constants and uτ is the friction velocity at the 
top or bottom as denoted. In pom97.f, (16a) has been replaced by  

  q
2l (σ1) = q2 (σ1) κDσ1 where σ1 is the value of σ corresponding to k =1, it is believed 

that this averts some numerical noise in some applications. 
 
The Vertically Integrated Equations 
     The equations, governing the dynamics of coastal circulation, contain fast moving 
external gravity waves and slow moving internal gravity waves.  It is desirable in terms 
of computer economy to separate the vertically integrated equations (external mode) from 
the vertical structure equations (internal mode). This technique, known as mode splitting  
(Simons, 1974; Madala and Piacsek, 1977) permits the calculation of the free surface 
elevation with little sacrifice in computational time by solving the velocity transport 
separately from the three-dimensional calculation of the velocity and the thermodynamic 
properties. 
     The velocity transport, external mode equations are obtained by integrating the 
internal mode equations over the depth, thereby eliminating all vertical structure. Thus, 
by integrating Equation (2) from σ = − 1 to σ = 0 and using the boundary conditions 
(13a,b), an equation for the surface elevation can be written as  
  

                   
∂η
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 =  0                                                (17) 
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After integration,  the momentum equations, (3) and (4), become               
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The overbars denote vertically integrated velocities such as 
 

U  ≡   U dσ .
-1
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∫                                                       (20) 

  
The wind stress components are − < wu(0) > and − < wu(0) > , and the bottom stress 
components are − < wu(−1) >  and − < wu(−1) > . The quantities ˜ F x  and ˜ F y  are defined 

according to 
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The so-called dispersion terms are defined according to                      
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 −  ˜ F x −  
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∂x
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Gy =  
∂U V D

∂x
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∂V 2D
∂y

 − ˜ F y  −  
∂UVD

∂x
 −  

∂V2D
∂y

 +  F y                  (22b) 

                                                                           
Note that, if AM is constant in the vertical, then the "F" terms in (22a) and (22b) cancel. 
However, we account for possible vertical variability in the horizontal diffusivity; such is 
the case when a Smagorinsky type diffusivity is used. As detailed below, all of the terms 
on the right side of (18) and (19) are evaluated at each internal time step and then held 
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constant throughout the many external time steps. If the external mode is executed cum 
sole, then Gx = Gy = 0. 
  
3. FORTRAN SYMBOLS 
     In the following table, we list the FORTRAN symbols followed by their 
corresponding analytical symbols in parentheses and a brief description of the symbols.  
Not explicitly tabulated are the suffixes b, blank and f which are appended to many of the 
variables to denote the time levels n - 1, n and n + 1 respectively. 
 
Indices     
  i, j (1,j) horizontal grid indexes 
  im, jm  outer limits of i and j 
  k (k) vertical grid index; k = 1 at the top and k = kb at the 

bottom 
  iint (n) internal mode time step index 
  iext external mode time step index 
  
Constants  
  days Specifies runtime (days) 
  dte (∆te) external mode time step, (s) 
  dti (∆ti) internal mode time step, (s) 
..hmax Maximum depth for the particular application 
  horcon(C) 
  iend 

the coefficient of the Smagorinsky diffusivity 
total internal mode time steps 

  iprint the interval in iint at which variables are printed 
  isplit dti/dte 
  kappa (κ) Von Karman's constant = 0.4 
  mode  

if mode = 2, a 2-D calculation is performed   
if mode = 3, a 3-D prognostic calculation is performed 
if mode = 4, a 3-D diagnostic calculation is performed 

  nread (0 or 1)  (does not or does) expect an beginning restart file 
  rfe, rfw, rfn, rfs = 1 or 0 on the four open boundaries; for use in bcond 
  rhoref reference density 
  smoth (α) parameter in the temporal smoother 
  tprni (AH/AM) inverse, horizontal, turbulence Prandtl number 
  r, ad1, ad2 Constants in the radiative penetrative equation, 

dependent on Jerlov type 
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  umol background vertical diffusivity 
..tbias, sbias temperature, salinity bias: for 32 bit arithmetic, may 

reduce roudoff error. 
 
 
One-dimensional Arrays 

 

  z(σ) sigma coordinate which spans the domain, z = 0 
(surface) to z = -1 (bottom)  

  zz sigma coordinate, intermediate between Z 
  dz(δσ) = z(k)−z(k+1) 
  dzz = zz(k)−zz(k+1) 
 
 

 

 
Two-dimensional Arrays 

 

  aam2d    vertical average of aam(m2 s-1)  
  art, aru, arv           cell areas centered on the variables, T, U and V 

respectively (m2) 
  
  advua, advva                      sum of the second, third and fourth terms in equations 

(18,19)  
 adx2d, ady2d vertical integrals of advx, advy; also the sum of the  

fourth, fifth and sixth terms in equations (22a,b)  
  cor (f)    the Coriolis parameter  (s-1)   
  curv2d the vertical average of curv 
  dum    Mask for the u component of velocity;  = 0 over land; = 

1 over water    
  dvm Mask for the v component of velocity;  = 0 over land; = 

1 over water  
  fsm  Mask for scalar variables; = 0 over land; = 1 over water  
  dx (hx  or δx)  grid spacing  (m)  
  dy (hy or δy) grid spacing  (m) 
  el (η)  the surface elevation as used in the external mode  (m) 
  et (η)  the surface elevation as used in the internal mode and 

derived from EL   (m)   
  eg (η) the surface elevation also used in theinternal mode for 

the pressure gradient and derived from EL (m) 
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  d (D)   = h + el  (m) 
  dt (D)   = h + et (m) 
  drx2d, drx2d vertical integrals of drhox and drhoy 
  h (H) the bottom depth  (m)   
  swrad short wave radiation incident on the ocean surface 

 (m s-1oC) 
  ua, va  (U ,V ) vertical mean of U,V  (m s-1)  
  ut, vt  (U ,V )  ua,va time averaged over the interval, DT = dti    

(m s-1) 
  wusurf, wvsurf  (<wu(0)>, <wv(0)>)   momentum fluxes at the surface      

(m2s-2) 
  wubot, wubot   (<wu(-1)>, <wv(-1)>)  momentum fluxes at the bottom      

(m2s-2) 
  wtsurf, wssurf    (<wθ (0)>,  <ws(0)>)     temperature and salinity fluxes 

at the surface   (ms-1 oC, ms-1 psu) 
 

  
Three-dimensional Arrays   
  advx, advy horizontal advection and diffusion terms in equations (3) 

and (4) 
  aam (AM)   horizontal kinematic viscosity (m2 s-1)  
  aah (AH)                                   horizontal heat diffusivity  = TPRNI*AAM  
  curv  (( ˜ f ) curvature terms; see equation (28)  
  l )(l  turbulence length scale 
  km (KM) vertical kinematic viscosity       (m2s-1)  
  kh (KH) vertical diffusivity         (m2s-1)  
  drhox   x-component of the internal baroclinic pressure gradient 

  gDhyρo
−1 −D δx ′ ρ δ ′ σ 

σ
0

∫ + δx D ′ σ δ ′ ρ 
σ
0

∫ 
 

 
 

 
 

 
  

subtract rmean from density  
before integrating 

  drhoy y-component of the internal baroclinic pressure gradient 

  gDhxρo
−1 −D δ y ′ ρ δ ′ σ 

σ
0

∫ + δy D ′ σ δ ′ ρ 
σ
0

∫ 
 

 
 

 
 

 
  

subtract rmean from density  
before integrating 

  rad (R) short wave radiation flux  (ms-1K). Sign is the same as 
wtsurf 

  q2 (q2) twice the turbulence kinetic energy   (m2s-2) 
  q2l (q2  l ) q2 x  the turbulence length scale    (m3s-2) 
  t (Τ)  potential temperature   (oC) 
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  s (S)  salinity   (psu) 
  rho (ρ -1000.)/rhoref  density  (non-dim.). Default rhoref=1025. 
  u, v (U, V)  horizontal velocities    (m s-1)  
  w (ω)  sigma coordinate vertical velocity    (m s-1) 
  rmean density field which is horizontally averaged before 

transfer to sigma coordinates. 
  tclim a stationary temperature field which  approximately has 

the same vertical structure as T. 
  sclim a stationary salinity field which  approximately has the 

same vertical structure as S. 
 
                                                             
 The variables, uf and vf, are used to denote the n+1 time level for u and v 
respectively.  However, in order to save memory they are also used to represent the n+1 
time level for t and s and for q2 and q2l respectively.  As soon as uf, vf are calculated for 
each representation, the time level is reset.  
 
 
4. THE NUMERICAL SCHEME 
 Figure 2 is the flow chart for the program in simplified form.  The external mode 
calculation is contained in program pom2k.   
 
 
External-Internal Mode Interaction.   
 The external mode calculation in MAIN results in updates for surface elevation, 
el, and the vertically averaged velocities, ua, va.  The internal mode calculation results in 
updates for u,v,t,s and the turbulence quantities. 
 Fig. 3 illustrates the time stepping process for the external and internal mode.  
Assume everything is known at tn-1 and tn (the previous leap frog time step having just 
been completed). Integrals involving the baroclinic forcing and the advective terms are 
supplied to the external mode along with the bottom stress, a process which is labeled 
"Feedback" in Fig. 3; their values are held constant during tn < t < tn+1 .  The external 
mode  "leap frogs" many times, with the time step, dte, until t = tn+1.  The vertical and 
time averaged velocities, utf, vtf, and those from the previous time step, utb,vtb, are time 
averages of the external variables, ua,va. The internal and external modes have different 
truncation errors so that the vertical integrals of the internal mode velocity may depart 
slightly from (ua,va) during the course of a long integration. We therefore adjust the 
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internal velocities, u,v, so that their vertical integrals  are the mean of utf,vtf and utb,vtb. 
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Time       n-1t nt n+1t
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External Mode

ETB ET ETF
UTB 
VTB

UTF 
VTF

o o oo

Feedback

DTI
Internal Mode

 
 
Figure 3. A simplified illustration of the interaction of the External Mode and the Internal 
Mode. The former uses a short time step, DTE, whereas the latter uses a long time step, 
DTI. The external mode primarily provides the surface elevation to the internal mode 
whereas, as symbolized by "Feedback", the internal mode provides intergrals of 
momentum advection, density integrals and bottom stress to the external mode.  
 
Care is taken to relate etf to elf  so that together with etb, saved from a previous time 
step, the internal velocities and etf and etb correctly satisfy the continuity equation, (17).  
Otherwise, the sigma coordinate equations for t, s will not be conservative.     
 Aside from the above, numerically important details, 0.5*(egf + egb) is used to 
obtain the elevation gradients for the internal mode "leap frog" from tn-1 to tn+1.  egf and 
egb are el, averaged over the intervals, tn to tn+1  and tn-1 to tn, respectively. It is this 
maneuver that renders the internal mode immune to the CFL condition based on the 
barotropic wave speed. The governing wave speed is the baroclinic wave speed. 

 
Structure of the Internal Mode Calculation.  
  The calculation of the three-dimensional (internal) variables is separated into a 
vertical diffusion time step and an advection plus horizontal diffusion time step.  The 
former is implicit (to accommodate small vertical spacing near the surface) whereas the 
latter is explicit.  To illustrate, consider the temperature equation, 

 

                         
∂DT
∂T

 +  Adv(T ) -  Dif (T)  =  
1
D

∂
∂σ

KH
∂T
∂σ

 
 

 
  −  

∂R
∂σ

                   (23) 
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Adv(T) and Dif(T) represents the advection and horizontal diffusion terms.  The solution 

is carried out in two steps. Thus, the advection and horizontal diffusion parts are 

differenced according to 

 

                             )( + )( - = 
2

~
1-

111
nn

nn-n

TDifTAdv
t

T - DTD
∆

−+

                         (24) 

 
and is solved by subroutine advt.  The vertical diffusion part is differenced according to 
 

 
∂σ
∂

∂σ
∂

∂σ
∂ RTK

D
T - DTD n

Hn

n+nn

  1 =
t2

~ 1

1+

111

−







∆

+++

                       (25) 

 
and is solved by subroutine proft as detailed in section 9 wherein (25) is first divided by 
Dn+1.  Note that, in this subroutine, Tn-1  is stored in tb, Tn  in t and Tn+1 in uf.     
 In the "leap frog" time differencing scheme, the solutions at odd time steps can 
diverge slowly from the solutions at the even time steps.  This time splitting is removed 
by a weak filter (Asselin, 1972) where the solution is smoothed at each time step 
according to 
 

Ts =  T +  
α
2

T n+1 -  2Tn  +  T n-1( ) 

           
where Ts is the smoothed solution; frequently, we use α = 0.05 .  This technique 
introduces less damping than either the Euler-backward or forward stepping techniques. 
After smoothing, Ts is reset to Tn-1  and Tn+1  to Tn. 
 
Grid Arrangement   
 The staggered grid arrangement for the external mode is depicted in Fig. 4 and 5 
for the external and internal grid respectively.  These diagrams will be useful in 
understanding the coding in pom2k and in the "prof" and "adv" subroutines. Although the 
fortan nomenclature in the code may appear to be cartesian coordinates, the grid can be 
an orthogonal curvilinear grid. One merely needs to specify hx(=dx(i, j)) and hy(=dy(i, j)) 
as that associated with a particular grid. The advective operators in equations (2) to (8) 
and (17) to (19) are then described in a finite volume sense; i.e. Equation (5) or, rather, 
the Adv operator in (24), is written 
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Figure 4. The two-dimensional external mode grid. 
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Figure 5. The three-dinensional internal mode grid. Q represents km, kh, q2, or q2l. t 
represents t,s or rho. 
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 −Adv(T )hx hy  =  δx DhyUT( ) +  δ y(DhxVT) +  hxhy
δσ (ωT )

δσ
  (26) 

                                            
(where it might be more consistent to multiply through by δσ, but this has not been 
effected in the code).  Thus DhyUT represents the transport of T  and δx represents the  
difference in this quantity through the opposing faces of the volume element. We leave it 
to the code listing in subroutine advt to describe the exact method of differencing. 
 The differencing for the velocity is accomplished in a similar way but involves 
Coriolis and curvature terms. The advective term for U in equation (3) is 
 

−Adv(U)hx hy =  δx DhyUU( ) +  δy (DhxUV) +  hxhy
δσ(ωU )

δσ
−  ˜ f VD hx hy

    
       (27) 

where   
 

 ˜ f  =  
Vδ x (hy )

hxhy
 -  

Uδy (hx )
hxhy

                                             (28) 

 
is the curvature term. In ADVCT, the horizontal advection, diffusion and curvature terms 
are calculated (and stored in ADVX, ADVY) well in advance of ADVU and ADVV so 
that their vertical averages can be used in the external mode calculation. In ADVU and 
ADVV, the pressure gradient, Coriolis and vertical advection are included along with the 
terms imported from ADVCT.  
 
Time Step Constraints.  
 The Courant-Friedrichs-Levy (CFL) computational stability condition on the 
vertically integrated, external mode, transport equations limits the time step according  

    ∆tE ≤  
1
Ct

 
1

δx2  +  
1

δy2

−1/2
                                        (29) 

 
where Ct = 2(gH)1/2 + Umax ; Umax is the expected, maximum velocity. There are other 
restrictions but in practice the CFL limit is the most stringent.  The model time step is 
usually 90% of this limit.  The internal mode has a much less stringent time step since the 
fast moving external mode effects have been removed.  The time step criteria is 
analogous to that for the external mode given by Equation (26) and is 
 

∆tI  ≤  
1

CT
 

1
δx2  +  

1
δy2

−1/2
                                          (30) 
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where CT = 2C + Umax; CT  is the maximum internal gravity wave speed based on the 
gravest mode, commonly of order 2m/s, and Umax  is the maximum advective speed.  For 
typical coastal ocean conditions the ratio of the time steps, ∆tI / ∆tE  = dti/dte, is often a 
factor of 50 - 80 or larger. For more information on the sensitivity of POM to time steps, 
see Ezer et al. (2002) 
 
 Additional limits are imposed by horizontal diffusion of momentum or scalars 
are, for A = AM or A = AH 
 

       ∆tI  ≤  
1

4A
 

1
∆x2  +  

1
∆y2

−1

                                         (31) 

A limit imposed by rotation is   
                                 ∆tI  <  

1
f

 =  
1

2Ω sin Φ
                                               (32) 

                                                                              
where AH is the horizontal diffusivity, Ω is the angular velocity of the earth and Φ is the 
latitude. (31) and (32) are, however, not restrictive compared to (29) and (30). 
 
5. pom2k.c 
 Common block definitions are contained in the file, pom2k.c. The file is then 
"included" in each subroutine. 
 
6. program pom2k and the external mode 
     The main program, pom2k, contains model initialization and, subsequently, 
internal mode time stepping via the index, iint.  All of the internal mode (three-
dimensional) subroutines, advq, profq, advu, profu, advv, profv, advt (for temperature or 
salinity), proft (for temperature or salinity) and dens are called once for each value of iint 
= 1 to iend. 
     Imbedded in the iint loop (which terminates at S.N. 9000) is the external mode 
iext loop which cycles isplit times.  Note that dti/dte = isplit.  The external mode solves 
for the vertically mean velocities and surface elevation using the density created by the 
internal mode which is held constant throughout the many external mode, time steps. 
     The advective and horizontal diffusion terms in the external model are calculated 
by vertical integration of the corresponding internal terms, advx and advy, created in 
subroutine advct. The latter are available every internal time step. However, they are 
updated by virtue of similar terms (but derived from the mean velocity) in subroutine 
advave. We find that this need not be done every external time step to maintain a stable 
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calculation. subroutine advave which calculates these terms are called at intervals of 
ispadv; a typical value is ispadv = 5. 
 
7. subroutine advave 
     This subroutine calculates the advective and horizontal diffusion terms for the 
external mode calculation contained in equations (18) and (19).  If mode = 2, it also 
calculates the bottom friction from a quadratic drag equation; otherwise, in the standard 
three dimensional calculation, the bottom friction is determined by profu and profv quite 
naturally as a byproduct of the bottom boundary layer. 
 
8. subroutine advt 
    This subroutine solves equation (24) for temperature or salinity (or any other scalar 
variable) which are labeled F internally. D~  has been set to Dn+1. The operator, Adv(F), 
is written in the form of equation (26).  As shown in the code listing, horizontal advective 
transports through the faces of the grid elements are computed in the form, d*u*f*dy and 
d*v*f*dx, using appropriate cell averages. Note that, in the code listing, dt is simply the 
external value, d, averaged over the internal time step.  To the advective fluxes are added 
the horizontal diffusion fluxes. Before this occurs, tclim is subtracted from the actual 
temperature [see Mellor and Blumberg, 1986, and discussion after equation (12a, b)]. 
Then, the diffusion terms will (gently) drive the calculated field back to climatology.  As 
resolution improves, the diffusion terms decrease as dx*dy decreases. The vertical 
advective flux divergence is determined (and temporally stored in ff) and then combined 
with the horizontal transport divergence. Finally, the time step is executed and the new 
value is stored in ff. 
 
9. subroutine proft 
     This subroutine solves (25) for temperature and salinity. We use the method 
described on p.198-201 of Richtmeyer and Morton (1967). The procedure here will be a 
model for u,v,q2 and q2l in which case the radiation term in (25) is either null or is 
replaced by source/sink turbulence terms. Subroutine proft as well as advt can be used to 
solve for other geochemical constituents besides temperature and salinity. 
      First, finite difference (25) with respect to σ [We note that 1~ += nDD ; the choice 
is irrelevant so long as the same value of D~  is used in (24) and (25)]. Thus, with 
reference to the elevation view of Fig. 5, 
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[ ]1kk
k

radrad
dz*d

dt2
+−−                       (9-1) 

 
where dzk = zk - zk+1 , dzzk = zzk - zzk+1  and fk represents either temperature or salinity.  
In the above, we use subscripts for k instead of parenthetical enclosure to save space; we 
also omit the i, j indicies. 
 
Solution Technique 
     Equation (9-1) can now be written as 
                                                                               

 ( ) kk1-kkkkk1+k d = c*f  1  c + a* f + a* f −−−                        (9-2)  

where 

kk

1+k
k dzz * dz * *2*d

kh * dti2  = a −                                   (9-3a) 

1-kk

k
k dzz * dz * 2**d

kh * dti2  = c −                                 (9-3b) 

[ ]1kk
k

kk radrad
dz*d

dti2f~  = d +−+−                              (9-3c) 

 
Now assume a solution of the form  
 

  k1+kk k gg + f *ee= f                                              (9-4) 
 

Inserting fk+1  directly from (9-4) and fk-1, obtained from (9-4), into (9-2) and collecting 
coefficients of fk and 1 yields 
 

 ( ) 1  e1*c + a
a = ee

1-kkk

k
k −−

                                    (9-5a) 

 

   ( ) 1ee1*c + a
d  gg*c = gg

1-kkk

k1-kk
k −−

+                                    (9-5b) 

 
The way the system works is as follows:  All ak's, ck's and dk's are calculated from (9-
3a,b,c).  Surface boundary conditions, discussed below, provide ee1 and gg1 and all of 
the necessary eek's and ggk's are obtained from the descending (as k increases towards 
the bottom) recursive relations (9-5a,b). Bottom boundary conditions provide fkb-1 where   
kb-1 is the grid point nearest the bottom. Thereafter all of the fk's may be obtained from 
the ascending recursive relation (9-4). 



 
 25 

 
 
Short Wave Radiation                                                                                                      
      To specify the short wave radiation, we use the classification of Jerlov(1976) as 
interpreted by Paulson and Simpson (1977), Thus, 
  

))d/ad2*exp(z*r)-(1d/ad1)*exp(z*(r*swrad = rad kkk +                     (9-6) 

 
where r, ad1 and ad2 are functions of ntp such that 
                       ntp                1          2          3          4           5 
                 Jerlov type          I           Ia         Ib        II          III 
                      r                  0.58      0.62     0.67     0.70     0.78 
                 ad1 (m)            0.35      0.60     1.0       1.5        1.4   
                 ad2 (m)          23.0      20.0     17.0     14.0        7.9 
 
Surface and Bottom Boundary Conditions  
  To apply the surface boundary conditions where the surface flux is prescribed 
(prescribing the surface temperature is much simpler since ee1 = 0, gg1  = fsurf) begins 
with (9-1) where for k=1 
 

  ( )211
1

11 ffa + wtsurf
dz*d

dti2 =  f  f −−−  

                                                                               
Using (9-4) to eliminate f2 and collecting coefficients of f1 and 1 yields 
  

1a
a = ee

1

1
1 −

                                                         (9-7a) 

 









−








−

1a
1*f~  

dz*d
wtsurf*dt2 = gg

1
1

1
1                                    (9-7b)  

                                                                             
At the bottom, we specify zero heat flux.  A repeat of the above procedure leads to 
 

1-)ee-(1*c
f~  gg*c = f

2-kb1-kb

1-kb2-kb1-kb
1-kb

−
                                                (9-8) 
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 Four different surface boundary conditions can be selected by choosing the 
appropriate nbc parameter when calling proft: 
 
nbc=1 - surface BC is wtsurf or wssurf (heat or salt flux BC) 
nbc=2 - surface BC is wtsurf+swrad (heat flux and short wave radiation penetration) 
nbc=3 - surface BC is tsurf or ssurf (SST or SSS BC) 
nbc=4 - surface BC is tsurf+swrad (SST and short wave radiation penetration) 
 
 Note that wtsurf and swrad are negative when water column is warming. 
(To transfer values of heat flux given in Wm-2 to wtsurf in K m s-1, divide by the factor 
4.1876x106). 
 
10. subroutine baropg 
 This subroutine calculates the baroclinic, vertical integrals involving density in 
equation (3) and (4) after the equations have been written in finite volume form. 
 We note the fact that, in the code, rmean=MEANρ  has been subtracted from 
ρ before the integrals are calculated. ρMEAN  is the basin area average density which is 
mapped onto the sigma-grid just as the initial conditions were similarly mapped  This 
procedure removes most of the truncation error in the transformed baroclinic terms which 
arise due to the subtraction of the two large terms involving 
∂ρ / ∂x  and D−1 ∂D ∂x( )σ∂ρ / ∂σ  in (3) and similarly in (4). 
 
11. subroutines advct, advu and advv 
 advct calculates the horizontal advection (including curvature terms) and the 
diffusion parts of (3) and (4) which are differenced in the manner of equation (27) and 
saved as advx and advy. These terms are vertically integrated and saved as adx2d and 
ady2d for use in the external mode calculation in program main. Originally, advct had 
been incorporated in advu and advv. However, it was determined by Oregon State 
University colleagues that advancing the calculation of horizontal advection terms (see 
Figure 2) for use in the external mode increased the model's intrinsic stabillity. 
 
12. subroutines profu and profv 
     These subroutines are virtually identical to subroutine proft.  However, the 
bottom boundary conditions are obtained from equations (14c,d,e). 
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13. subroutine advq 
      This subroutine is very similar to all the other "adv-" subroutines in that it 
calculates the advective terms for the the turbulence quantities, q2 and q2l. 
 
14. subroutine profq 
     This subroutine first solves for the vertical part of the equations (7) and (8) for q2 
and q2l in the manner of equation (25). The numerical procedure is the same as 
subroutine proft. The turbulence closure scheme as described by Mellor and 
Yamada(1982) is contained in this subroutine. A somewhat simplified version of the 
level 2 1/2 model is used here and is discussed in Galperin et al (1988) and Mellor 
(1989). A recent correction to the model is presented by Mellor (2001) 
     The vertical diffusivities, KM and KH,  are defined according to 
 

 KM = ql SM                                                    (14-1a) 
 

 KH = ql SH                                                     (14-1b) 
                   
The coefficients, SM and SH, are functions of a Richardson number given by  
 

SH [1 − (3A2B2 + 18A1A2)GH ] = A2[1 − 6A1 / B1]                        (14-2a) 
  

SM [1 − 9A1A2GH ] −  SH [(18A12 + 9A1A2)GH ] = A1[1 − 3C1 − 6A1 / B1]      (14-2b) 
 
where 
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2 1    = l                                   (14-2c) 

                
is a Richardson number. The five constants in (14-2a,b) are mostly evaluated from near 
surface turbulence data (law-of-the-wall region) and are found (Mellor and Yamada, 
1982) to be (A1, B1, A1, B2, C1 ) = (0.92, 16.6, 0.74, 10.1, 0.08). The stability functions 
limit to infinity as GH approaches the value, 0.0288, a value larger than one expects to 
find in nature.The quantity, cs2, in the square brackets of (14-2c) is the speed of sound 
squared. In the code the vertical pressure gradient is obtained from the hydrostatic 
relation,of course, but here, the density is taken as a constant consistent with the pressure 
determination in subroutine dens; i.e., ∂p / ∂z = − ρog  
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15. subroutine vertvl 
     This short subroutine integrates equation (2) to obtain the sigma coordinate 
transformed "vertical velocity"  which, actually, is the velocity normal to sigma surfaces. 
Occasionally, check w(i, j, kb); if all is well, the code should yield very small values 
(~ 1011). If there is to be a surface throughflow of (usually fresh) water, then w(i,j,1) = 
vflux(i,j) 0≠  
 
16. subroutine bcond 
      Lateral boundary conditions contiguous to coastlines are handled automatically 
by the masks dum, dvm and fsm. They set to zero the velocities normal to land 
boundaries. The landward tangential velocities in the horizontal friction terms are also set 
to zero. For a sigma coordinate system, the latter is of little importance since the 
minimum water depth next to the coast can be quite shallow so that bottom friction 
dominates over lateral friction. We often set the minimum depth at 10 m, but smaller 
values are possible. For example, where tides are present, negaative values of d are to be 
avoided  
     Open boundaries are considerably more demanding and uncertain and there is a 
need for boundary condition specification for both the external and internal modes. 
 Table A collects a variety of open boundary conditions; they are by no means 
inclusive. If (A - 1) is used around all open boundaries, then it is necessary to insure that 
the horizontal integral of BC around the boundary is zero; otherwise, the average basin 
elevation can increase or decrease, possibly disastrously. This can also happen with the 
exclusive use of (A - 4). 
 Calculations do not seem overly sensitive to the velocity component tangential to 
the boundary, at least for low Rossby number flows. We often set it to zero; alternatively  
advective boundary conditions similar to  (B - 3) have been used. 
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Table A: A list of possible external mode open boundary conditions. In the formulations, ce = gH  . 
The variable BC is user specified and may be equated to the left sides of (A-1) to (A-3) where U  and η 
are known a priori. The right sides of (A-4) and (A-5) need not necessarily be zero. This table has been  
greatly augmented from the original by Peter Holloway (School of Geography and Oceanography, University 
College, University of New South Wales, Australian Defence Force Academy, Australia) and edited by George 
Mellor. The table does not exhaust the list of possible boundary conditions. Please report errors. 
 
Formula Boundary Code 
 Inflow condition: 
 DU = BC   
               (A -1) 

EAST 
 

uaf(im,j) = 2*bc(j)/(h(im,j)+elf(im,j) + h(imm1,j +elf(imm1,j)) 
elf(im,j) = elf(imm1,j) 
vaf(im,j) = set1  

 WEST 
 

uaf(2,j) = 2*bc(j)/(h(1,j)+elf(1,j) + h(2,j)+elf(2,j)) 
elf(1,j) = elf(2,j) 
vaf(1,j) = set 

 NORTH 
 

vaf(i,jm) = 2*bc(i)/(h(i,jm)+elf(i,jm) + h(i,jmm1) + elf(i,jmm1)) 
elf(i,jm) = elf(i,jmm1) 
uaf(i,jm) = set 

 SOUTH 
 

vaf(i,2) = 2*bc(i)/(h(i,1)+elf(i,1) + h(i,2)+elf(i,2)) 
elf(i,1) = elf(i,2) 
uaf(i,1) = set 

 Elevation condition: 
η  = BC      
              (A - 2)          

EAST 
 

elf(imm1,j) = bc(j) 
elf(im,j) = elf(imm1,j)      cosmetic 
uaf(im,j) = uaf(imm1,j) 
vaf(im,j) = set 

 WEST 
 

elf(2,j) = bc(j) 
uaf(2,j) = uaf(3,j) 
vaf(1,j) = set 

 NORTH 
 

elf(i,jmm1) = bc(i) 
elf(i,jm) = elf(i,jmm1)      cosmetic 
vaf(i,jm) = vaf(i,jmm1) 
uaf(i,jm) = set 

 SOUTH 
 

elf(i,2) = bc(i) 
vaf(i,2) = vaf(i,3) 
uaf(i,1) = set 

                                                 
1  We use "set" to denote the prescription for the along-boundary component of velocity. If it is a 
known value then that value can be used. More often it is not known and the value, 0, is used. 
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Radiation: 
HU ± ceη = BC 2  
                     (A-3) 

EAST 
 

uaf(im,j) = sqrt(grav/h(imm1,j))* el(imm1,j) + bc(j) 
elf(im,j) = elf(imm1,j) 
vaf(im,j) = set 

 WEST 
 

uaf(2,j) = - sqrt(grav/h(2,j))* el(2,j)+bc(j) 
elf(1,j) = elf(2,j) 
vaf(1,j) = set 

 NORTH 
 

vaf(i,jm) = sqrt(grav/h(i,jmm1))* el(i,jmm1) + bc(i) 
elf(i,jm) = elf(i,jmm1) 
uaf(i,jm) = set 

 SOUTH 
 

vaf(i,2) = - sqrt(grav/h(i,2))* el(i,2)+bc(i) 
elf(i,1) = elf(i,2) 
uaf(i,1) = set 

Radiation: 
∂U
∂ t

± ce
∂U
∂x

= 0 

                     (A-4) 

EAST 
 

gae = dte*sqrt(grav*h(im,j))/dx(im,j) 
uaf(im,j) = gae*ua(imm1,j) + (1.-gae)*ua(im,j) 
elf(im,j) = elf(imm1,j) 
vaf(im,j) = set 

 WEST 
 

gae = dte*sqrt(grav*h(2,j))/dx(2,j) 
uaf(2,j) = gae*ua(3,j) + (1.-gae)*ua(2,j) 
elf(1,j) = elf(2,j) 
vaf(1,j) =  set 

 NORTH 
 

gae = dte*sqrt(grav*h(i,jm))/dy(i,jm) 
vaf(i,jm) = gae*va(i,jmm1) + (1.-gae)*va(i,jm) 
elf(i,jm) = elf(i,jmm1) 
uaf(i,jm) = set 

 SOUTH 
 

gae = dte*sqrt(grav*h(i,2))/dy(i,2) 
vaf(i,2) = gae*va(i,3) + (1.-gae)*va(i,2) 
elf(i,1) = elf(i,2) 
uaf(i,1) = set 

 
 
 
 
 

 Table B are open boundary conditions for the internal mode.As in the external 
mode, the choice for the normal velocities is unclear. One might presume that (B - 2) is to 
be preferred over (B - 1) since internal waves can pass through the boundary with little 
reflection. In some applications, that may be the case. However, we have seen cases 
(open boundaries with substantial inflows) where the "freedom" of     (B - 2)  can set up 
unphysical, but numerically valid, baroclinic structures interior to the boundary. 

                                                 
2 The boundary forcing can be set to known values approximately balancing the left side; e. g., on the 
east, bc(j) = uabe(j)-sqrt(grav/h(imm1,j))* ele(j) where uabe(j) and ele(j) are specified values. 



 
 31 

 
Radiation: 
∂η
∂ t

± ce
∂η
∂x

= 0     

                   (A-5) 

 
EAST 

 

gae = dte*sqrt(grav*h(imm1,j))/dx(imm1,j) 
elf(imm1,j) = gae*el(imm2,j) + (1.-gae) *el(imm1,j) 
elf(im,j) = elf(imm1,j) 
uaf(im,j) = uaf(imm1,j) 
vaf(im,j) = set 

 WEST 
 

gae = dte*sqrt(grav*h(2,j))/dx(1,j) 
elf(2,j) = gae*el(3,j) + (1.-gae)*el(2,j) 
uaf(2,j) = uaf(3,j) 
vaf(2,jm) = set 

 NORTH 
 

gae = dte*sqrt(grav*h(i,jmm1))/dy(i,jmm1) 
elf(i,jmm1) = gae*el(i,jmm2) + (1.-gae) *el(i,jmm1) 
elf(i,jm) = elf(i,jmm1) 
vaf(i,jm) = vaf(i,jmm1) 
uaf(i,jm) = set 

 SOUTH 
 

gae = dte*sqrt(grav*h(i,2))/dy(i,2) 
elf(i,2) = gae*el(i,3) + (1.-gae)*el(i,2) 
vaf(i,2) = vaf(i,3) 
uaf(i,1) = set 

 Cyclic        (A-6) EAST 
(I=IM) 

elf(im,j) = elf(3,j) 
uaf(im,j) = uaf(3,j) 
vaf(im,j) = vaf(3,j) 

 WEST 
(I=1) 

elf(1,j) = elf(imm2,j) 
elf(2,j) = elf(imm1,j) 
uaf(2,j)=uaf(imm1,j) 
vaf(2,j)=vaf(imm1,j) 

 NORTH 
(J=JM) 

elf(i,jm) = elf(i,3) 
uaf(i,jm) = uaf(i,3) 
vaf(i,jm) = vaf(i,3) 

 SOUTH 
(J=1) 

elf(i,1) = elf(i,jmm2) 
elf(i,2) = elf(i,jmm1) 
uaf(i,2)=uaf(i,jmm1) 
vaf(i,2)=vaf(i,jmm1) 

 
 
 
 

 The finite difference expression one gets for the EAST version of (B - 2) is  
 

Uim
n+1 = γUim−1

n + (1 − γ )Uim
n ; γ ≡ ci∆ti / ∆x  

 
where one might like ci  to be the gravest mode, baroclinic phase speed. However, it is 
assumed that: a) the user has found and is using a ∆ti  such that the maximum value of γ  
is near unity, corresponding approximately to the maximum depth and b) that ci is 
proportional to H . This is a seemingly crude approximation, but may perform fairly 
well; it at least guarantees that 0 < γ ≤1. 
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TABLE B: A list of internal mode variables to be set on open lateral boundaries and 
example boundary conditions. Note that UF and VF are used for the forward time step of 
U and V, T and S, and Q2 and Q2L. The variables TBE, TBW, TBN, TBS (and similar 
variables for salinity) are supplied by the user  

 
Formula Boundary Code 

Inflow condition: 
 

EAST 
 

uf(im,j,k) = bc(j,k) 
vf(im,j,k) = set 

U = BC       WEST 
 

uf(2,j,k) = bc(j,k) 
vf(1,j,k) = set 

               (B-1) NORTH 
 

vf(i,jm,k) = bc(i,k) 
uf(i,jm,k) = set 

 SOUTH 
 

vf(i,2,k) = bc(i,k) 
uf(i,1,k) = set 

Radiation: 
∂U
∂t

± ci
∂U
∂x

= 0  

EAST 
 

gai = sqrt(h(im,j)/hmax)  
uf(im,j,k) = gai*u(imm1,j,k) + (1.-gai)*u(im,j,k) 
vf(im,j,k) = set 

                (B-2) WEST 
 

gai = sqrt(h(2,j)/hmax) 
uf(2,j,k) = gai*u(3,j,k) + (1.-gai)*u(2,j,k) 
vf(1,j,k) = set 

                     NORTH 
 

gai = sqrt(h(i,jm)/hmax) 
vf(i,jm,k) = gai*v(i,jmm1,k) + (1.-gai)*v(i,jm,k) 
uf(i,jm,k) = set 

 SOUTH 
 

gai = sqrt(h(i,2)/hmax) 
vf(i,2,k) = gai*v(i,3,k) + (1.-gai)*v(i,2,k) 
uf(i,1,k) = set 

 
 
Upstream advection 
on T or S: 

EAST 
 

uf(im,j,k) = t(im,j,k) -dti/(dx(im,j)+dx(imm1,j)) * ((u(im,j,k) + 
abs(u(im,j,k))) * (t(im,j,k)-t(imm1,j,k)) + (u(im,j,k) - abs(u(im,j,k))) * 
(tbe(j,k)-t(im,j,k))) 

∂T
∂ t

+U
∂T
∂x

= 0 WEST 
 

uf(1,j,k) = t(1,j,k) -dti/(dx(1,j)+dx(2,j)) * ((u(1,j,k) + abs(u(1,j,k))) * 
(t(1,j,k)-tbw(j,k)) + (u(1,j,k) - abs(u(1,j,k))) * (t(2,j,k)-t(1,j,k))) 

                  (B-3)  NORTH 
 

uf(i,jm,k) = t(i,jm,k) -dti/(dy(i,jm)+dy(i,jmm1)) * ((v(i,jm,k) + 
abs(v(i,jm,k))) * (t(i,jm,k)-t(i,jmm1,k)) + (v(i,jm,k) - abs(v(i,jm,k))) * 
(tbn(i,k)-t(i,jm,k))) 

 SOUTH 
 

uf(i,1,k) = t(i,1,k) -dti/(dy(i,1)+dy(i,2)) * ((v(i,1,k) + abs(v(i,1,k))) * 
(t(i,1,k)-tbs(i,k)) + (v(i,1,k) - abs(v(i,1,k))) * (t(i,2,k)-t(i,1,k))) 

Cyclic       (B-4)  Much the same as (a - 6) except replace uaf with uf, etc. and t, s, q2 and 
q2l are handled similar to elf. 
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17. subroutine dens   
     The UNESCO equation of state, as adapted by Mellor(1991) is used. The in situ  
density is determined as a function of salinity, potential temperature and pressure; the 
latter is approximated by the hydrostatic relation and constant density. Initially, the 
values tbias and sbias are subtracted from temperature and salinity to reduce round-off 
error. With 32 bit arithmatic, a suggestion is tbias = 10. and sbias = 35. for open ocean 
models; with 64 bits, zero values are appropriate. In dens, these values are added again 
before the density is calculated. The actual density is normalized on 1000 kg/m2. Since 
only gradients are needed (in subroutines baropg and profq), the value 1.025 is subtracted 
to reduce round-off error. APPENDIX A includes some discussion of thermodynamics. 
 
18. subroutine slpmin 
 This subroutine examines the topography and adjusts H(I,J) so that the difference 
of the depths of any two adjacent cells divided by  the sum of the depths is less than or 
equal to the parameter, SLMIN. In the process, volume is preserved. What generally 
happens is that the topography in deeper water is not changed whereas the shallower 
regions are altered depending on resolution. 
 
19. utililty subroutines                                   
     There are a number of utility subroutines supplied with the program. For the most 
part they can be understood by reference to comments written into the code. All of the 
printing subroutines print out numbers in floating point or integer format. They accept a 
scale factor in the argument list which is either zero, in which case the code generates its 
own scale factor, or a finite value which is then used to scale the printed numbers. If the 
scale factor is negative, the output is floating point. 
 
20. PROGRAM CURVIGRID 
     The program is set up to accept values of longitude and latitude, here denoted by 
x and y to define the four edges of the gridded domain.  This can be altered to 
accommodate rectilinear coordinates by setting the cosine of the latitude, CS = 1, in 
subroutine ORTHOG or by expunging the variable completely. 
     The border of the domain is determined by NB, NR or NL points on the J=1, I=1 
and J=JM borders respectively.  In this version of the program, DATA statements contain 
this information.  Cubic splines are then used to fill in the missing border coordinates. 
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     The program is comprised of two steps: 
     I. The interior grid points (1 < J < JM) are filled such that the values at every I 
column is distributed proportionately to the y-values at I=1; the interior x value are 
similarly distributed. 
     II. Subroutine ORTHOG is called to render the xi,j and yi,j an orthogonal 
coordinate system.  Then, use is made of the orthogonality  conditions 
 

  
∂x
∂s

 
 
  

 
 

j
 =  -

∂y
∂s

 
 
  

 
 

i
 ,  

∂y
∂s

 
 
  

 
 

j
 =  

∂x
∂s

 
 
  

 
 

i
 (20-1a,b) 

or    

  
δ jx
δ j s

 =  -  
δ i y
δi s

,  
δ j y
δ js

 =  
δi x
δ is

 (20-2a,b) 

With reference to Fig. 6, (20-2a,b) are solved according to 
 

  xi, j -  xi, j-1 =  
δ js
δis

[yi+1, j  -  yi-1, j +  yi+1, j-1 -  y1,j -1]  (20-3a) 

  yi,j  -  yi,j -1 =  
δ js
δi s

[xi+1, j -  xi-1, j +  xi+1,j -1 -  x1, j-1]                   (20-3b)                                 

   
  where 

  
δi s =  

1
4

[(xi+ i, j  -  xi, j )
2  +  (yi+1, j  -  yi1, j )

2 ]1/2

       +  
1
4

[(i+1, j-1 -  xi-1, j-1)2  +  (yi+1,j -1 -  yi-1, j-1)2 ]1/2
 (20-4a) 

 
  δ js =  [(xi, j -  xi, j-1)2  + (yi,j  -  yi,j -1)2]1/2                            (20-4b)                                 

    
The factor, CS, the cosine of the latitude, is not included in (20-3a,b) and (20-4a,b) but is 
included in the corresponding code in ORTHOG.  Now, the above equations are interated 
many times during which  δjs is fixed; i.e., δjs , xi,1  and yi,1 are data of the initial field  
specified in step I which are retained.  In the course of iteration, δjs , xi,j and yi,j are 
reevaluated.  The shape of the original domain does change but not greatly.  During this 
iteration, CS is held fixed.  In fact, CS changes very little so that ORTHOG is called only 
twice to converge on this factor. 
     It should be noted that, if the border points contain too much curvature, then the 
curves normal to the i = constant curves can focus to a point at some j row after which 
the calculation is nonsense.  Some trial and error is therefore required.  A way to avoid 
this is to call POISSON after step I which solves for yi,j according to 
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∂2 y / ∂2i + ∂2y / ∂2 j = 0.  This avoids the focusing problem but may not yield the most 
desirable grid. 
 

      
j

j

j  -
1

i

i

i +1

i -1

 
Figure 6. The orthogonal curvilinear grid system. 

 
 
     A good practice is to map the bottom topography on to the grid, then calculate the 
CFL limiting time step for each grid point; one wishes, of course, to avoid overly small 
steps. 
 
 An alternate and more sophisticated grid generating code can be found in grid.f 
and sepelli.f in the directory, contrib_code, in our ftp site. However, there is as yet no 
documentation for grid.f. 
 
                                                    
APPENDIX A:  Note on the Equation of State, Potential Temperature and Static 
Stability 
 
     Two equations of state for density are                    
 

            ρ = ρ1(T ,S, p)                                                      (A-1) 
 

   ρ = ρ2(Θ ,S, p)                                                     (A-2) 
 

where T is in situ  temperature and Θ is the potential temperature. In the model, (A-2) is 
used. To relate potential temperature, Θ, to in situ  temperature, T, recall the 
thermodynamic relation for entropy. 
  

Tdη =  dh -  
dp
ρ

 -  µdS                                                 (A-3) 
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where η is the entropy, h, enthalpy and µ the chemical potential for salt taken here as a 
single average constituent. Furthermore, 
  

                    dh =  CpdT +  (1 -  αT )
dp
ρ

                                           (A-4) 

 
where we have set 
 

  
∂h
∂T

 
 
  

 
 

p,S
≡ Cp  ,

∂h
∂p

 
 
 

 
 
 

T,S
=

(1− αT )
ρ

                               (A-5a, b) 

 
and where the coefficient of thermal expansion is  
 

              α ≡  −  
1
ρ

∂ρ
∂T

 
 
  

 
 

p
                                                    (A-5c)  

 
We note that (A-5b) has been obtained from (A-3) and one of Maxwell's relations.  
Combining (A-3) and (A-4), we have 
  

                           dη =  Cp
dT
T

 -  α
dp
ρ

 -  
µdS
T

                                         (A-6) 

 
The definition of potential temperature in oceanography* is 
  

                                        
ρ

α dp
T
dTCdC ppo  -   ≡

Θ
Θ

                                           (A-7) 

   
where Cp = Cp (T,S,p) and Cpo  = Cp (T,S,0).  Combining (A-6) and (A-7), 
  

                   dη =  Cpo
dΘ
Θ

 -  
µdS
T

                                                (A-8) 

For processes where heat transfer, viscous dissipation and salt diffusion are null, DΘ/Dt 
= DS/DT = 0; then, from (A-8), Dη/Dt = 0; i.e. the process is isentropic.  An integral 
relation obtained from (A-7) is  
 

                                                 
* as contrasted to meteorology, where, for a perfect gas, we have αT = 1 and p = ρRT.  
Potential temperature is then defined as dΘ/Θ = dη/Cp = dT/T - (R/Cp)dp/p which can be 
integrated exactly to give   Θ = T(po/p)R/Cp ; po is a reference pressure where Θ  = T.   
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  T(z) − Θ =
′ α ′ T 
′ C pp

o
∫

d ′ p 
′ ρ 

 = −
′ α ′ T g
′ C pz

o
∫ d ′ z                                    (A-9) 

 
The hydrostatic pressure relation is used to obtain the second expression on the right of 
the equal sign. In (A-9), Θ(z) = Θ(0) = T(0). For T = 10oC, S = 35 psu and p = 0, one 
finds (Gill, 1982, p.603) that αTg / Cp ≅ 0.12K / 1000m . Equation (A-9) allows one to 
initialize potential temperature in the model given in situ  properties. An algorithm to do 
this is provided by Bryden (1973). 
 
Static Stability 
     To conveniently provide further background information and also inquire into an 
aspect of the Boussinesq approximation, we review the following equations for two-
dimensional isentropic flow (see also Mellor and Ezer, 1995, for evaluation of a non-
Boussinesq version of POM). 
 

                   
∂ ˜ u 
∂x

 +  
∂ ˜ w 
∂z

 =  0                                               (A-10) 

 

           ˜ ρ 
∂ ˜ u 
∂ t

 +  ˜ u  ⋅  ∇ ˜ u 
 
 

 
  =  -  

∂ ˜ p 
∂x

                                    (A-11) 

 
˜ ρ 

∂ ˜ w 
∂ t

 +  ˜ u  ⋅  ∇ ˜ w 
 
 
  

 
  =  −  

∂ ˜ p 
∂z

 −  ˜ ρ g                                (A-12) 

 
where we have made the Boussinesq approximation in (A-10) but have not done so in    
(A-11) and (A-12).  Equation (A-10) is justified by examination of the full equation  
∇.u + ˜ ρ −1D ˜ ρ / Dt = 0. The first term scales like uo/L whereas the second scales as 
(uo/L)δ ˜ ρ / ˜ ρ   Since δ ˜ ρ / ˜ ρ  < .05  in the ocean, the second term can be neglected.  
  Let mean quantities be denoted by upper case letters and fluctuating quantities by 
lower case letters; the exception to this is density where ρ and ρ' are the mean and 
fluctuating values.  For this analysis the mean velocity will be zero.  Therefore we have 
( ˜ u , ˜ w ) = (u,w), ˜ p = P + p ,  ˜ ρ = ρ + ′ ρ , ∂P / ∂z = −ρg  and ρ = ρ(z)  so that, for small 
perturbations, 
 

             
∂u
∂x

 +  
∂w
∂z

 =  0                                             (A-13) 

                                    

   ρ
∂u
∂ t

 =  -  
∂p
∂x

                                              (A-14) 
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                                            ρ
∂w
∂ t

 =  -  
∂p
∂z

 -  ′ ρ g                                           (A-15) 

                                                                               
Now for isentropic flows the equations of state yields D ˜ ρ / Dt = c−2D˜ p / Dt  where 
c2 ≡ (∂˜ p / ∂˜ ρ )Θ,S  is the speed of sound squared. The corresponding density perturbation 

equation is 
 

∂ ′ ρ 
∂t

+ w
∂ρ
∂z

=
1
c2 w

∂p
∂z

+
∂p
∂ t

 
 
  

 
  

or 
∂ ′ ρ 
∂t

− w
ρN2

g
=

1
c2

∂p
∂ t

                                         (A-16) 

  
where             

                          ρ
N2

g
≡  -  

∂ρ
∂z

 +  
1
c2

∂p
∂z

 =  -  
∂ρ
∂z

 -  
ρg
c2                              (A-17) 

 
N2 is the Brunt-Vassala frequency squared or the static stability.  If one eliminates u, p 
and ρ' from (A-13) to (A-16), the resulting equation for w is 
 

                             
∂2

∂t2
∂2w
∂z2  +  

∂2w
∂x2  +  

N2

g
∂w
∂z

 

  
 

   +  N2 ∂2w
∂x2  =  0  (A-18) 

         
The last term in the square brackets can be neglected compared with the first. To check 
this, let  g-1N2wz/wzz ~  g-1N2Lz where Lz is the vertical scale height. g-1 N2Lz has two 
parts as shown in (A-17). If we take Lz ≈ 1000m, then the first part, ρ−1ρzLz   ≈  - .010 
and the second part, c-2gLz  ≈ .005. Tracing back through the original equations, we find 
that this approximation is equivalent to setting ρ = constant = ρo in (A-14) and (A-15) 
and neglecting the right side of (A-16). 
     A solution to (A-18) for N2 = constant is w ∝ exp i(lz + kx − σt)[ ]where the 
dispersion relation is  σ2 = N2k2 / (l2 + k2) . If N2  < 0, the flow is unstable; if N2  > 0, 
the flow is stable. Thus, N2, given by (A-17) is the correct static stability parameter for 
use in the turbulence closure model which are constructed from perturbation equations 
like    (A-16)  together with other equations and terms. 
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