Outline of topics covered

- Simple SI model structure
- Systems of Ordinary Differential Equations (ODE)
- Conservation principles
- Simple solvers
- Time step constraint (stability)
- Stiff equations
- Flexible time step control
- MATLAB ODE solvers

Abalone Model Structure

- 3

イロト 不得下 イヨト イヨト

Simple SI models

Susceptible-Infected (SI) models represent the transmission of disease by contact.

S and I are number of susceptible and infected individuals in a population, respectively.

These ODE represent the rate of susceptible individuals infected by contact transmission with a rate β [fraction of population infected per infected individual].

$$\frac{dS}{dt} = -\beta IS$$
$$\frac{dI}{dt} = +\beta IS$$

Initial population is required: $S(t = 0) = S_o$ and $I(t = 0) = I_o$, then the numbers can be determined by solving these equations.

SI models represented by coupled ODE

- All SI models are specified as systems of ODE.
- Model coefficients can be constants, functions of time or functions of the model state (S, I).
- Models evolve over time from initial conditions (initial value problem).
- Models are typically solved numerically.

イロト 不得下 イヨト イヨト

Conservation Principles

Models have conservation principles which must be obeyed by numerical solutions. These can act as tests, constraints or diagnostics.

$$\frac{dS}{dt} = -\beta IS$$
$$\frac{dI}{dt} = +\beta IS$$
$$\frac{d(S+I)}{dt} = 0$$

For the simple SI model above, the total population ($S + I = S_o + I_o = constant$).

All population numbers must be non-negative.

Klinck (ODU)

Abalone Model Structure

Numerical Solutions

Numerical Solutions to ODE (1)

The basic idea is that the time derivative

$$\frac{dS}{dt} = f(S, I, t)$$

is the slope of the solution at the present time (t) and model state (S, I). Moving a short time (dt) along that slope,

will estimate the solution at the next time,

or

$$S(t+dt) = S(t) + dt f(S, I, t) + truncation$$

Truncation is the error made by making a finite jump. The bigger dt the bigger the error.

This formulation is only one of many ways to convert a continuous derivative into a finite difference statement.

Abalone Model Structure

RCN workshop: May, 2015 5 / 11

Numerical Solutions to ODE (2)

There are 3 general types of ODE solvers:

- Runge-Kutta methods: Multiple fractional jumps across the time interval *dt* and average results to get a final estimate.
- Richardson Extrapolation methods: Estimate a (simple) functional form for the slope in the near future and integrate (analytically) the solution.
- Predictor-Corrector methods: Use current and past information to estimate the solution at t + dt. Then use the estimated future solution to improve the slope estimate for the final estimate.

We will use Runge-Kutta methods programmed in MATLAB.

Klinck (ODU)

Abalone Model Structure

Simple Solution Method

Consider the simple mortality equation

$$\frac{dS}{dt} = -mS$$

$$S(t)=S_o\,e^{-m\,t}$$

then the Euler solution method is

$$S(t+dt) = S(t) - dt mS(t) = (1 - dt m)S(t)$$

With the condition that $S(t = 0) = S_o$.

Klinck (ODU)

Abalone Model Structure

Stability and Step Constraints

$$S(t+dt) = S(t) - dt mS(t) = (1 - dt m)S(t)$$

- Clearly, dt m < 1 or else the solution will oscillate and grow.
- Even if the solution is stable, the quality of the solution is better as dt becomes smaller.
- But, smaller *dt* means more steps and more computer time.
- More about step size, but first...

Klinck (ODU)

Abalone Model Structure

RCN workshop: May, 2015 8 / 11

イロト 不得下 イヨト イヨト

Stiff ODE: Problem with numerical solutions

Stiff ODE are equations with terms having different rates of change. Consider an SI model with recruitment and mortality. For large I, the infection rate (βI) can be large compared to r.

$$\frac{dS}{dt} = -\beta IS + rS$$
$$\frac{dI}{dt} = +\beta IS - mI$$

The time step of the equations must be small enough to represent these changes.

Klinck (ODU)

Abalone Model Structure

Flexible step control

Modern ODE solvers internally calculate dt to maintain a stable solution and to maintain a certain quality in the solution.

An example of the method is illustrated by step halving/doubling:

- Calculate S(t + dt) from S(t) using a step size dt.
- Calculate $\hat{S}(t + dt)$ from S(t) using a 2 steps size dt/2.
- Compare $\hat{S}(t + dt)$ and S(t + dt) to estimate the truncation error
 - if the trunction error is too small, double *dt*,
 - ▶ if the trunction error is too big, halve *dt*,

MATLAB ODE solvers use flexible step size to maintain stable, quality solutions.

ODE solvers in MATLAB

- ODE45: A Runge-Kutta based solver which is recommended for non-stiff equations giving moderate quality solutions. This is the generally recommended solver.
- ODE15s: A moderate quality solver for stiff equations. Recommended if ODE45 fails to give a reasonable solution.
- ODE23s: A better solver for stiff equations if ODE15s fails to find an appropriate solution.

Example MATLAB usage:

```
nVar=2;
y0=zeros(nVar,1); % initial conditions
tspan=[0 100]; % time span
% RHS is a matlab function defining the ODEs
[t,y]=ode45(@RHS,tspan,y0);
```

Klinck (ODU)

Abalone Model Structure