
Outline

Outline of topics covered

I Simple SI model structure

I Systems of Ordinary Differential Equations (ODE)

I Conservation principles

I Simple solvers

I Time step constraint (stability)

I Stiff equations

I Flexible time step control

I MATLAB ODE solvers

Klinck (ODU) Abalone Model Structure RCN workshop: May, 2015 1 / 11



ODE models

Simple SI models

Susceptible-Infected (SI) models represent the transmission of disease by
contact.
S and I are number of susceptible and infected individuals in a population,
respectively.
These ODE represent the rate of susceptible individuals infected by
contact transmission with a rate β [fraction of population infected per
infected individual].

d S

dt
= −β I S

d I

dt
= +β I S

Initial population is required: S(t = 0) = So and I (t = 0) = Io , then the
numbers can be determined by solving these equations.

Klinck (ODU) Abalone Model Structure RCN workshop: May, 2015 2 / 11



ODE models

SI models represented by coupled ODE

I All SI models are specified as systems of ODE.

I Model coefficients can be constants, functions of time or functions of
the model state (S , I ).

I Models evolve over time from initial conditions (initial value problem).

I Models are typically solved numerically.

Klinck (ODU) Abalone Model Structure RCN workshop: May, 2015 3 / 11



ODE models

Conservation Principles

Models have conservation principles which must be obeyed by numerical
solutions. These can act as tests, constraints or diagnostics.

d S

dt
= −β I S

d I

dt
= +β I S

d (S + I )

dt
= 0

For the simple SI model above, the total population (S + I = So + Io =
constant).
All population numbers must be non-negative.

Klinck (ODU) Abalone Model Structure RCN workshop: May, 2015 4 / 11



Numerical Solutions

Numerical Solutions to ODE (1)

The basic idea is that the time derivative

d S

dt
= f (S , I , t)

is the slope of the solution at the present time (t) and model state (S , I ).
Moving a short time (dt) along that slope,
will estimate the solution at the next time,
or

S(t +dt) = S(t) +dt f (S , I , t) + truncation

Truncation is the error made by making a
finite jump. The bigger dt the bigger the
error.
This formulation is only one of many ways to convert a continuous
derivative into a finite difference statement.

Klinck (ODU) Abalone Model Structure RCN workshop: May, 2015 5 / 11



Numerical Solutions

Numerical Solutions to ODE (2)

There are 3 general types of ODE solvers:

I Runge-Kutta methods: Multiple fractional jumps across the time
interval dt and average results to get a final estimate.

I Richardson Extrapolation methods: Estimate a (simple) functional
form for the slope in the near future and integrate (analytically) the
solution.

I Predictor-Corrector methods: Use current and past information to
estimate the solution at t + dt. Then use the estimated future
solution to improve the slope estimate for the final estimate.

We will use Runge-Kutta methods programmed in MATLAB.

Klinck (ODU) Abalone Model Structure RCN workshop: May, 2015 6 / 11



Numerical Solutions

Simple Solution Method

Consider the simple mortality equation

d S

dt
= −mS

S(t) = So e
−m t

then the Euler solution method is

S(t + dt) = S(t) − dt mS(t) = (1 − dt m)S(t)

With the condition that S(t = 0) = So .

Klinck (ODU) Abalone Model Structure RCN workshop: May, 2015 7 / 11



Numerical Solutions

Stability and Step Constraints

S(t + dt) = S(t) − dt mS(t) = (1 − dt m)S(t)

I Clearly, dt m < 1 or else the solution will oscillate and grow.

I Even if the solution is stable, the quality of the solution is better as
dt becomes smaller.

I But, smaller dt means more steps and more computer time.

I More about step size, but first...

Klinck (ODU) Abalone Model Structure RCN workshop: May, 2015 8 / 11



Numerical Solutions

Stiff ODE: Problem with numerical solutions

Stiff ODE are equations with terms having different rates of change.
Consider an SI model with recruitment and mortality. For large I , the
infection rate (β I ) can be large compared to r .

d S

dt
= −β I S + r S

d I

dt
= +β I S −m I

The time step of the equations must be small enough to represent these
changes.

Klinck (ODU) Abalone Model Structure RCN workshop: May, 2015 9 / 11



Numerical Solutions

Flexible step control

Modern ODE solvers internally calculate dt to maintain a stable solution
and to maintain a certain quality in the solution.
An example of the method is illustrated by step halving/doubling:

I Calculate S(t + dt) from S(t) using a step size dt.

I Calculate Ŝ(t + dt) from S(t) using a 2 steps size dt/2.

I Compare Ŝ(t + dt) and S(t + dt) to estimate the truncation error
I if the trunction error is too small, double dt,
I if the trunction error is too big, halve dt,

MATLAB ODE solvers use flexible step size to maintain stable, quality
solutions.

Klinck (ODU) Abalone Model Structure RCN workshop: May, 2015 10 / 11



MATLAB solvers

ODE solvers in MATLAB

I ODE45: A Runge-Kutta based solver which is recommended for
non-stiff equations giving moderate quality solutions. This is the
generally recommended solver.

I ODE15s: A moderate quality solver for stiff equations. Recommended
if ODE45 fails to give a reasonable solution.

I ODE23s: A better solver for stiff equations if ODE15s fails to find an
appropriate solution.

Example MATLAB usage:

nVar=2;

y0=zeros(nVar,1); % initial conditions

tspan=[0 100]; % time span

% RHS is a matlab function defining the ODEs

[t,y]=ode45(@RHS,tspan,y0);

Klinck (ODU) Abalone Model Structure RCN workshop: May, 2015 11 / 11


