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Outline of topics covered

What is, how to build
 asimple compartmental disease model (transmission)
* Mortality and Reproduction
 Common disease transmission ways
* Host heterogeneity
* Latency period, exposure
* Seasonality associated to processes

* Basic reproduction number, ‘disease risk’



Compartmental models

S| model
How many and how fast
5 I individuals move between
compartments?
Susceptible Infected P

STOCHASTIC MODELS

4
ﬁ% * More realistic in general

* All diseases are subjected to stochasticity in terms of
chance of disease transmission.

DETERMINISTIC MODELS

Infected individuals

A

* Describe what happens ‘on average’ in a population.

* Parameters are fixed.

* The model predictions are ‘predetermined’.
* A good approximation in large populations and high
disease incidence (stochastic fluctuations are small).



Discrete time models [ S %I ]

ﬁTransmission rate

Contact rate transmission probability

Proportion of contacts over  Proportion of contacts that
all possible contacts (t step) develop the disease

S = ] 0 1/10=0.1 infected/contact 1.0 (1 00%{
t= 0 All contacts develop the disease

. All possible contacts |
]t=0 = 1 between S and |/ ﬁZOI
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S, =S-BST=10-01x10 =9

L,=L+BSI =1+01x10 =2



Discrete time models [5 %/ ]

S1= 9,1 = 2 B

Next time step t+2
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Continuous time models S /

B

* Describe events occurring continuously (rather than at discrete time intervals)
* Imply to solve Differential Equation systems
* Each derivative function = rate of change of each subpopulation
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Mortality, Reproduction

ReproS Reprol
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Dead Decay Bmort B Imort
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Disease transmission
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Transmission terms
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Disease transmission

Infection Rate
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Disease transmission

Host heterogeneity (age dependent transmission)

S1 Class 1 (juveniles) pI1=0.01

S2 Class 2 (adults) p2=0.2
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Disease transmission
With a latency period (New class = Exposed)

Duration of the latent period ~ 1/
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Disease transmission

Seasonality; Time Factors (TF)
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Time lag
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Seasonality

dS
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Seasonality in the model S—I-P
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Basic reproduction number, R, - for model S-1-P

R, > 1 Epizootic  R,< 1 Disease extinction

dsS

- = = IB infec PS
7 Pinfect
. . dl = + PS—Imortl

Next Generation Matrix 7 Prinjeer P S~ Imor
Diekmann et al . 2010

dP

d_ = + [release [ — Premove P

t

1. Find the steady state for a disease free population—> [1=P=0

dS

— =0 the population is constant at the initial population level S_=N

dt

2. Linearize the equations that are involved in the infectious processes
Around N and forland P << N

dl
d
dp
dt

t Bpinfeer PN —Imort 1

= + Irelease [ — Premove P



dl
Basic reproduction number, R, &

Next Generation Matrix (NGM) Ci_P ¥ Irelease I — Premove P
t

t Bpiecr P N—Imortl  Eq.I

Eq. P

3. Descompose the Jacobian matrix, used to describe the ODE, in two matrix:

T (transmission, gain terms +) Y (transition, loss terms - )
+1 +P -1 -P
0 Bpinfect N \Ea-1 —Imort 0 Eq./
T p— E —
Irelease 0 Eq. P 0 — Premove ) Eq.P

—1
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4. Construct the NGM for the large domain (K, =-T-Z)

nmfec N
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L — T Irelease
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Basic reproduction number, R,

Calculate the eigenvalues for K, . The dominant eigenvalue is R,..

_)\ 5Pinfect N

Premove | = ()
Irelease Y

Imort

\2 Bpinfect N ITelease _ 0

Imort - Premove

with solution

\ = Bpinfect N Irelease _ R

Imort Premove 0




Basic reproduction number, R,
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Summary

1) Compartmental deterministic models are particularly suitable for large populations
and high infection incidence diseases

2) Transmission models can contemplate...

* Both host and pathogen associated biological factors.

* Host heterogeneity in terms of transmission (e.g. age)

» Exposure period (latency)

* Seasonality

* Formulation/calculation of basic reproduction number, Ro

3) Next...

* Model parameterization with available data

* Numerical solving of differential equations in these 1-pop models
* Metapopulation models

* Multispecies models
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Recap: a simplified particle contact model
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Common ecological rate parameters

parasite inactivation in the environment (t)
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Transmission () and the force of infection (A)

# of new infections

A=

# exposed * duration of exposure



Transmission () and the force of infection (A)

# of new infections

A =
# exposed * duration-of-exposure

If Ais a per capita instantaneous incidence of infection,
under density dependent transmission A = 3P



Observations of the abalone WS-RLO system

Parameter Definition Value Reference

B0t Natural mortality rate 0.15 yr Tegner et al (1989)

loore WS mortality rate 0.05-0.90 yr' Moore et al (2011)

B Coefficient of transmission ¢

| cease Production of infectious stages ?

P Parasite inactivation in the environment  52.14 -365yr' C. Friedman pers. comm.

remove




Parameter estimation — mortality

Estimating survival or mortality is a problem of
estimating the proportion of individuals that survive
or die from one time period to the next




Parameter estimation — mortality

Estimating survival or mortality is a problem of
estimating the proportion of individuals that survive
or die from one time period to the next

If the rate of an event happening to any one individual
is p, and there are n independent individuals, the
number of individuals y to which the event happens
follows a binomial distribution

LogL(pln,y)=ylog(p)+(n-y)log(l-p)



Survivor Function
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Survivor Function
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Survivor Function
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Lets try it!

(0.15+1,,,.)t ]

LogL(I  1n,y)=y(0.15+1 )Ht+(n-y)log[l-e

mort

Function files
* binoLogLike.m
* binoNLogLike.m

Scripts
* fit_mortality.m



Log Likelihood
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