Disease Transmission Models

Gorka Bidegain¹ Tal Ben-Horin²

¹ Gulf Coast Research Lab, University of Southern Mississippi ² Haskin Shellfish Research Lab, Rutgers University

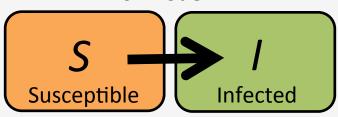
RCN Marine Disease Modeling and Transmission Workshop, 11-15 May 2015 Center for Coastal Physical Oceanography Old Dominion University, Norfolk, Virginia

Outline of topics covered

- What is, how to build
 - a simple compartmental disease model (transmission)
- Mortality and Reproduction
- Common disease transmission ways
- Host heterogeneity
- Latency period, exposure
- Seasonality associated to processes
- Basic reproduction number, 'disease risk'

Compartmental models

SI model



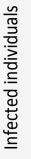
How many and how fast individuals move between compartments?

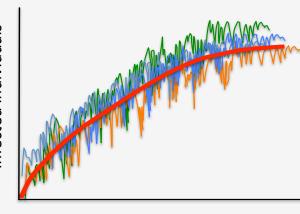
STOCHASTIC MODELS

- More realistic in general
- All diseases are subjected to stochasticity in terms of chance of disease transmission.

DETERMINISTIC MODELS

- Describe what happens 'on average' in a population.
- Parameters are fixed.
- The model predictions are 'predetermined'.
- A good approximation in large populations and high disease incidence (stochastic fluctuations are small).

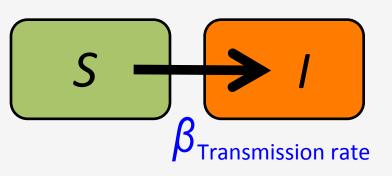




time

Discrete time models

... to understand continuous time models



$S_{t=0} = 10$

$$I_{t=0} = 1$$

All possible contacts between S and I

$$S \times I = 10$$
 contacts

$$S_{t+1} = S_t - \beta S_t I_t = 10 - 0.1 \times 10 = 9$$

$$I_{t+1} = I_t + \beta S_t I_t = 1 + 0.1 \times 10 = 2$$

Contact rate

Proportion of contacts over all possible contacts (t step)

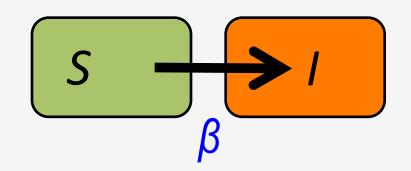
transmission probability

Proportion of contacts that develop the disease

infected/contact 1.0 (100%) All contacts develop the disease

$$\beta = 0.1$$

Discrete time models



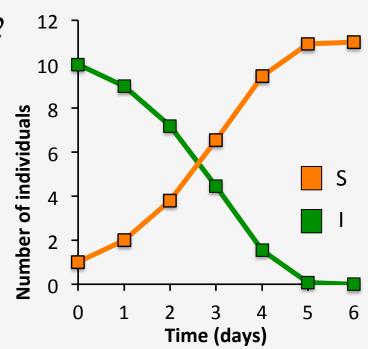
$$S_{t+1} = 9$$
; $I_{t+1} = 2$

Next time step t+2

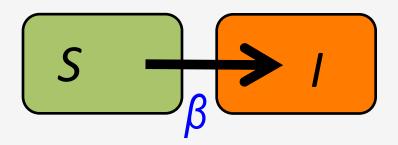
$$S_{t+2} = S_{t+1} - \beta S_t I_t = 9 - 0.1 \times 9 \times 2 = 7.2$$

 $S \times I = 18$

$$I_{t+2} = I_{t+1} + \beta S_t I_t = 2 + 0.1 \times 9 \times 2 = 3.8$$



Continuous time models



- Describe events occurring continuously (rather than at discrete time intervals)
- Imply to solve Differential Equation systems
- Each derivative function → rate of change of each subpopulation

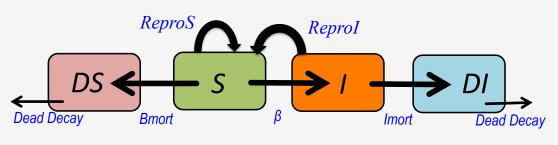
$$\frac{dS}{dt} = -\beta S(t) I(t)$$

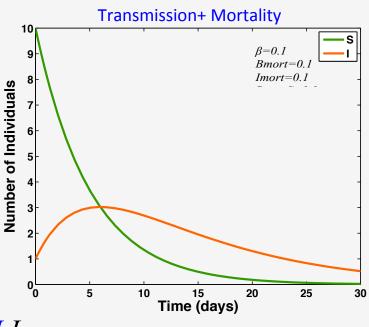
$$\frac{dI}{dt} = + \beta S(t) I(t)$$

Initial conditions
$$S(t = 0) = S_0 = 10$$

$$I(t = 0) = I_0 = 1$$

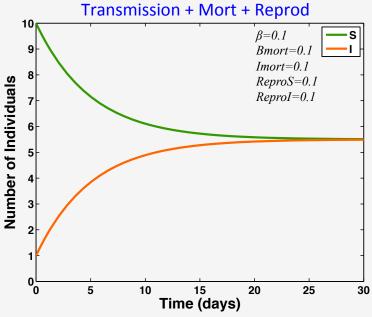
Mortality, Reproduction



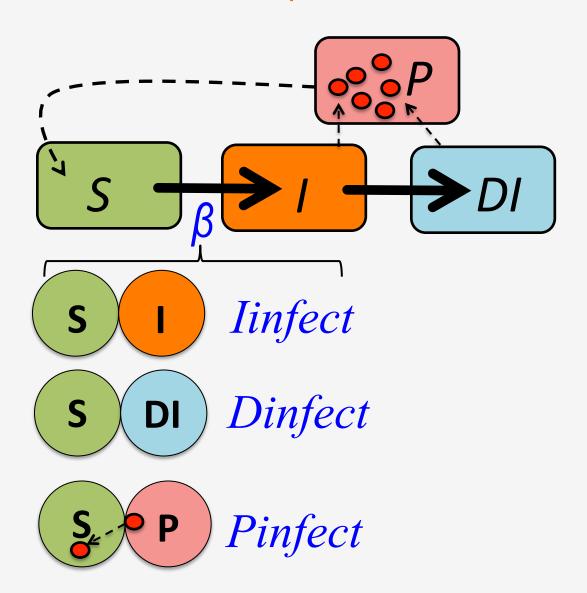


$$\frac{dS}{dt} = -\beta SI - Bmort S + ReproSS + ReproII$$

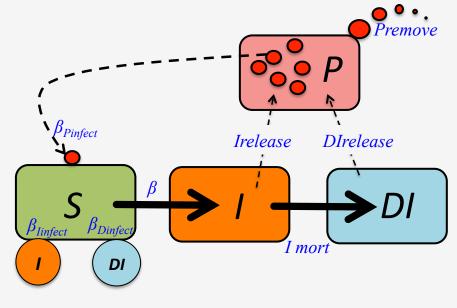
$$\frac{dI}{dt} = + \beta S I - Imort I$$



Infected, Dead infected and particles



Infected, Dead infected and Particles



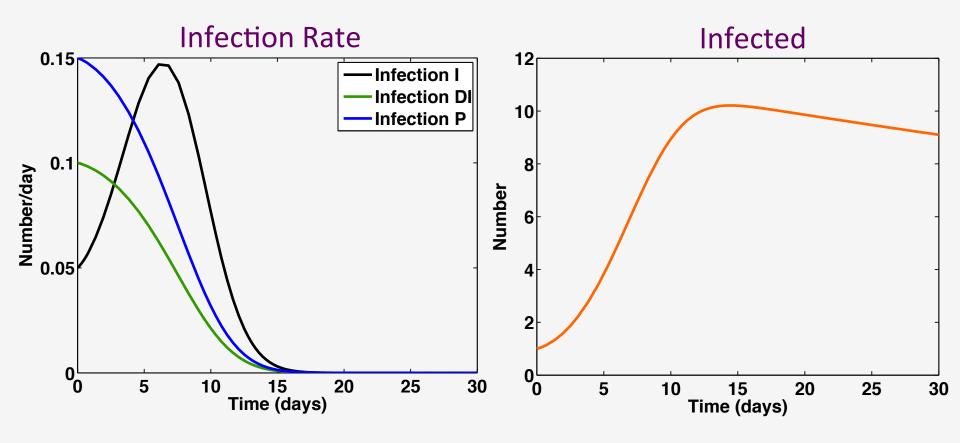
Transmission terms
$$\frac{dS}{dt} = -\left(\beta_{linfect} S I + \beta_{Dinfect} S \underline{DI} + \beta_{Pinfect} S \underline{P}\right) + ReproS S + ReproI I$$

$$\frac{dI}{dt} = +\left(\beta_{linfect} S I + \beta_{Dinfect} S D I + \beta_{Pinfect} S P\right) - Imort I$$

$$\frac{dDI}{dt} = + Imort I - DeadDecay D I$$

$$\frac{dP}{dt} = + Irelease I + DIrelease D I - Premove P$$

Infected, Dead infected and Particles



S(0)=10, I(0)=1, DI(0)=1, P(0)=1, Iinfect=0.005, DIinfect=0.01, Pinfect=0.015Imort=0.008, DIdecay=0.5, Irelease=0.5, DIrelease=0.5, Premove=0.3

Host heterogeneity (age dependent transmission)

S1 Class 1 (juveniles)
$$\beta 1 = 0.01$$

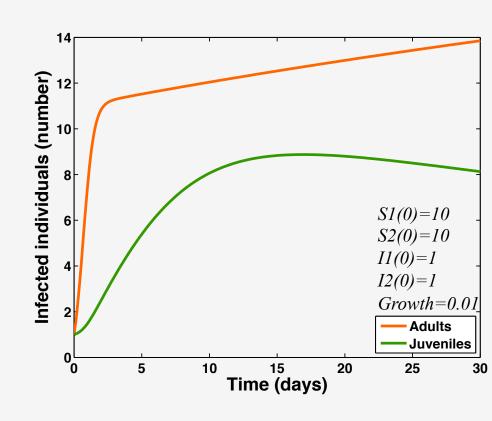
S2 Class 2 (adults)
$$\beta 2 = 0.2$$

$$\frac{dS1}{dt} = -\beta I S_1 (I_{I+}I_2) - \operatorname{growth} S_1$$

$$\frac{dS2}{dt} = -\beta 2 S_2 (I_{1+}I_2) + growth S_1$$

$$\frac{dI1}{dt} = + \beta I S_I (I_{I+}I_2) - growth I_I$$

$$\frac{dI2}{dt} = +\beta 2 S_2 (I_{I+}I_2) + growth I_1$$



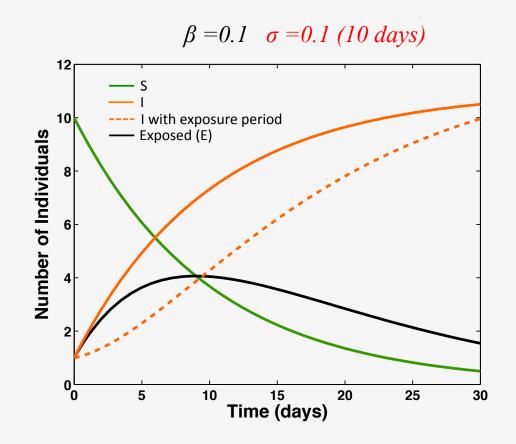
With a latency period (New class → Exposed)

Duration of the latent period $\sim 1/\sigma$

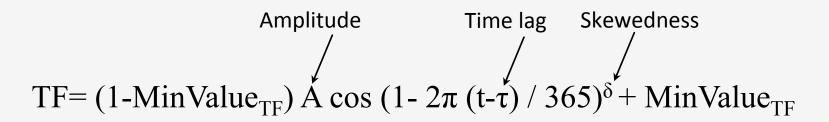
$$\frac{dS}{dt} = -\beta SI$$

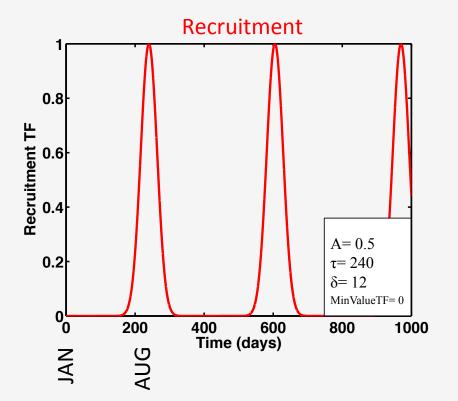
$$\frac{dE}{dt} = +\beta SI - \sigma E$$

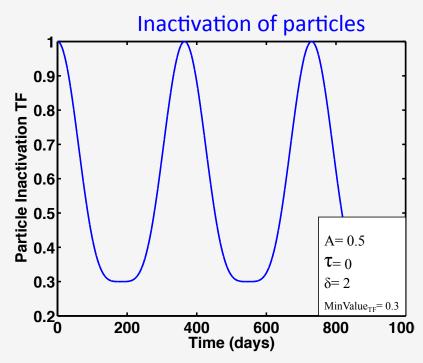
$$\frac{dI}{dt} = \sigma E$$



Seasonality; Time Factors (TF)







Seasonality

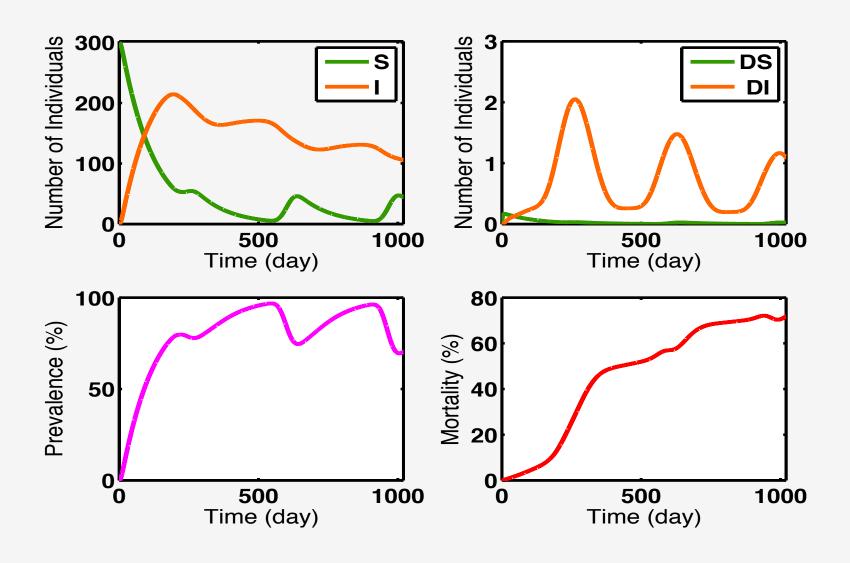
$$\frac{dS}{dt} = -\beta_{Pinfect} S P + TF_{recruitment} (ReproS S + ReproI I) - TF_{mortality} Bmort S$$

$$\frac{dI}{dt} = +\beta_{Pinfect} S P - TF_{mortality} Imort I$$

$$\frac{dDI}{dt} = + TF_{mortality} Imort I - TF_{decay} DeadDecay DI$$

$$\frac{dP}{dt} = Irelease I + Direlease DI) - TF_{inactivation} Premove_{Inact.} P - Premove_{others} P$$

Seasonality in the model S-I-P



Basic reproduction number, R_0 - for model S-I-P

 $R_0 > 1$ Epizootic $R_0 < 1$ Disease extinction

Next Generation Matrix
$$\frac{dS}{dt} = -\beta_{Pinfect} P S$$

$$\frac{dI}{dt} = +\beta_{Pinfect} P S - Imort I$$
Diekmann et al. 2010
$$\frac{dP}{dt} = + Irelease I - Premove P$$

1. Find the steady state for a disease free population \rightarrow I=P=0

$$\frac{dS}{dt} = 0$$
 the population is constant at the initial population level S_o=N

2. Linearize the equations that are involved in the infectious processes

Around N and for I and P << N

$$\frac{dI}{dt} = + \beta_{Pinfect} P N - Imort I$$

$$\frac{dP}{dt} = + Irelease I - Premove P$$

Basic reproduction number, R_0

Next Generation Matrix (NGM)

$$\frac{dI}{dt} = + \beta_{Pinfect} P N - Imort I \qquad \text{Eq. } I$$

$$\frac{dP}{dt} = + Irelease I - Premove P \qquad \text{Eq. } P$$

3. Descompose the Jacobian matrix, used to describe the ODE, in two matrix:

 Σ (transition, loss terms -)

$$\mathbf{T} = \begin{pmatrix} 1 & +P \\ 0 & \beta_{Pinfect} N \end{pmatrix}_{\text{Eq. }P}^{\text{Eq. }I} \mathbf{\Sigma} = \begin{pmatrix} -Imort & 0 \\ 0 & -Premove \end{pmatrix}_{\text{Eq. }P}^{\text{Eq. }I}$$

$$\mathbf{\Sigma}^{-1} = \begin{pmatrix} \frac{-1}{Imort} & 0 \\ 0 & \frac{-1}{Premove} \end{pmatrix}$$

4. Construct the NGM for the large domain $(K_L = - T \cdot \Sigma^{-1})$

$$\mathbf{K_L} = -\mathbf{T} \cdot \mathbf{\Sigma}^{-1} = \begin{pmatrix} 0 & \frac{eta_{Pinfect} N}{Premove} \\ \frac{Irelease}{Imort} \end{pmatrix}$$

Basic reproduction number, R_{θ}

5. Calculate the eigenvalues for K_L . The dominant eigenvalue is R_o .

$$\begin{vmatrix} -\lambda & \frac{eta_{Pinfect} N}{Premove} \\ \frac{Irelease}{Imort} & -\lambda \end{vmatrix} = 0$$

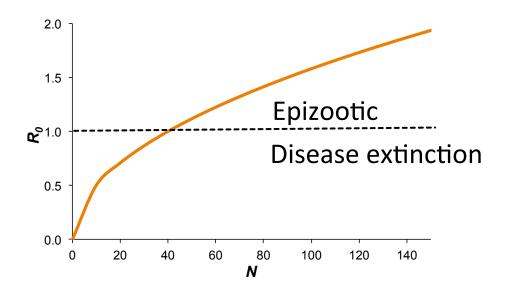
$$\lambda^2 - \frac{\beta_{Pinfect} \, N \, Irelease}{Imort \cdot Premove} = 0$$

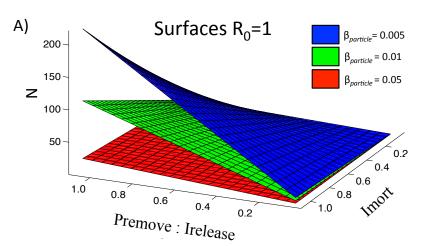
with solution

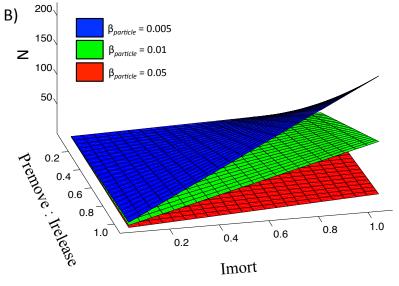
$$\lambda = \sqrt{rac{eta_{Pinfect} N}{Imort} rac{Irelease}{Premove}} = \ oldsymbol{R_0}$$

Basic reproduction number, R_{θ}

$$R_0 = \sqrt{rac{eta_{Pinfect} N}{Imort} rac{Irelease}{Premove}}$$







Summary

- 1) Compartmental deterministic models are particularly suitable for large populations and high infection incidence diseases
- 2) Transmission models can contemplate...
 - Both host and pathogen associated biological factors.
 - Host heterogeneity in terms of transmission (e.g. age)
 - Exposure period (latency)
 - Seasonality
 - Formulation/calculation of basic reproduction number, Ro

3) Next...

- Model parameterization with available data
- Numerical solving of differential equations in these 1-pop models
- Metapopulation models
- Multispecies models

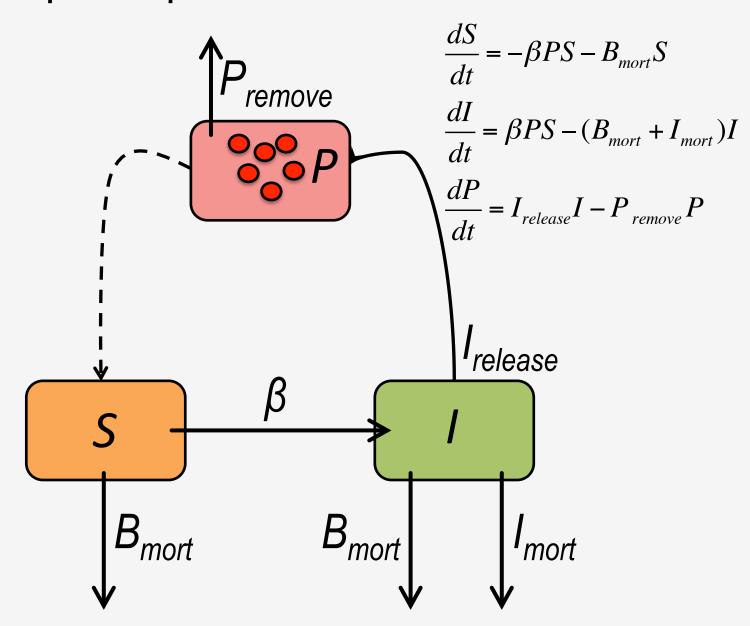
Some Abalone Data and an Intro To Parameter Estimation

Tal Ben-Horin² Gorka Bidegain¹

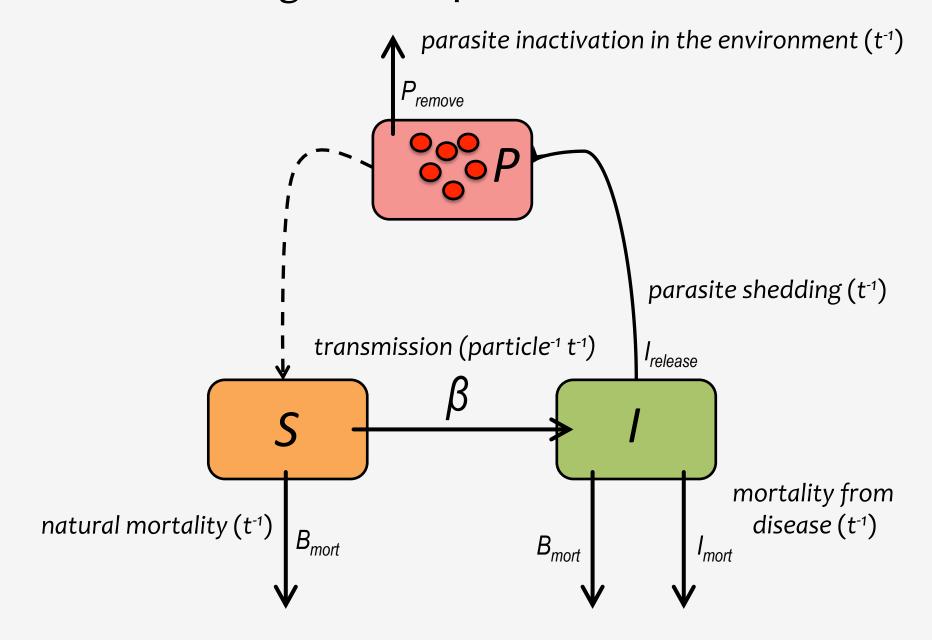
¹ Gulf Coast Research Lab, University of Southern Mississippi ² Haskins Shellfish Research Lab, Rutgers University

RCN Marine Disease Modeling and Transmission Workshop, 11-15 May 2015 Center for Coastal Physical Oceanography Old Dominion University, Norfolk, Virginia 23529

Recap: a simplified particle contact model



Common ecological rate parameters



Transmission (β) and the force of infection (λ)

of new infections
$$\lambda = \frac{}{}$$
exposed * duration of exposure

Transmission (β) and the force of infection (λ)

If λ is a *per capita* instantaneous incidence of infection, under density dependent transmission $\lambda = \beta P$

$$\beta = \frac{\lambda}{P}$$

Observations of the abalone WS-RLO system

Parameter	Definition	Value	Reference
B_{mort}	Natural mortality rate	0.15 yr ⁻¹	Tegner et al (1989)
I _{mort}	WS mortality rate	0.05 – 0.90 yr ⁻¹	Moore et al (2011)
β	Coefficient of transmission	?	
 release	Production of infectious stages	?	
P_{remove}	Parasite inactivation in the environment	52.14 – 365 yr ⁻¹	C. Friedman pers. comm.

Parameter estimation – mortality

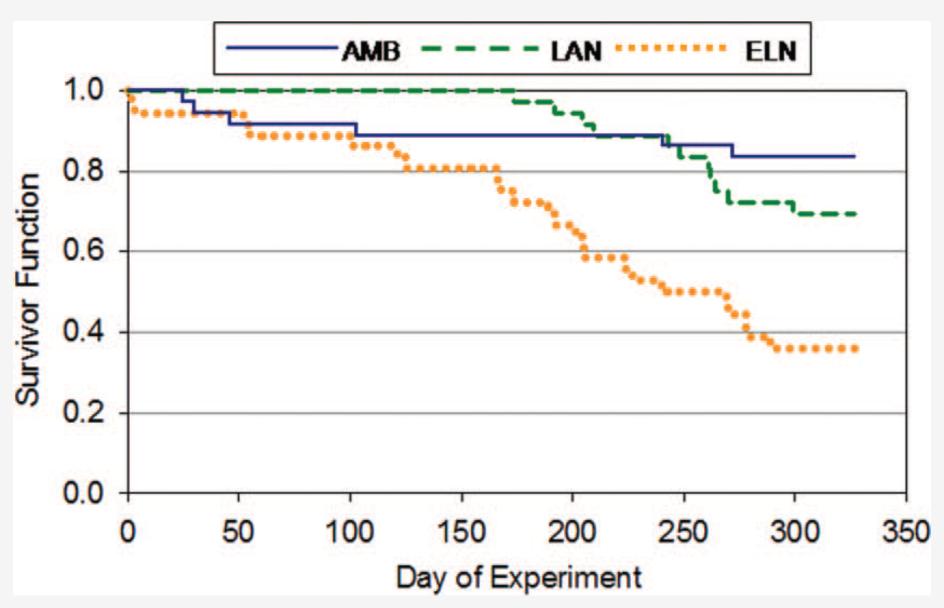
Estimating survival or mortality is a problem of estimating the proportion of individuals that survive or die from one time period to the next

Parameter estimation – mortality

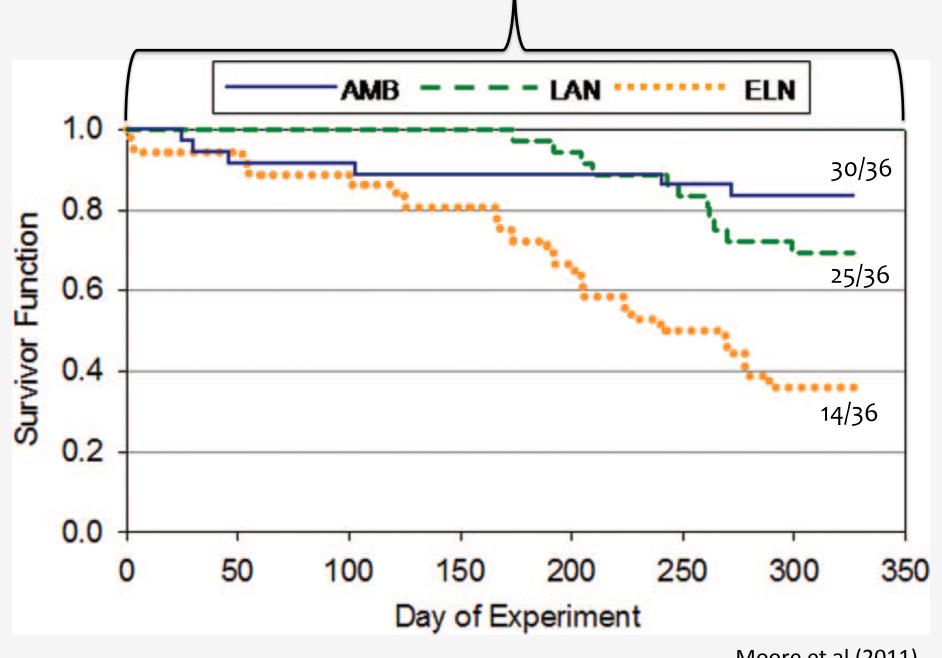
Estimating survival or mortality is a problem of estimating the proportion of individuals that survive or die from one time period to the next

If the rate of an event happening to any one individual is **p**, and there are **n** independent individuals, the number of individuals **y** to which the event happens follows a **binomial** distribution

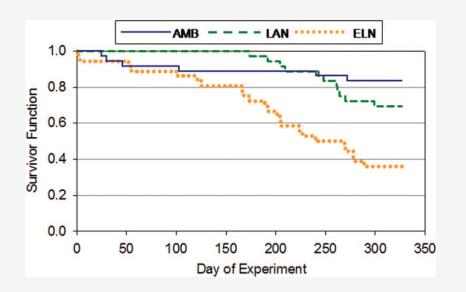
$$LogL(p \mid n, y) = y \log(p) + (n - y) \log(1 - p)$$



Moore et al (2011)

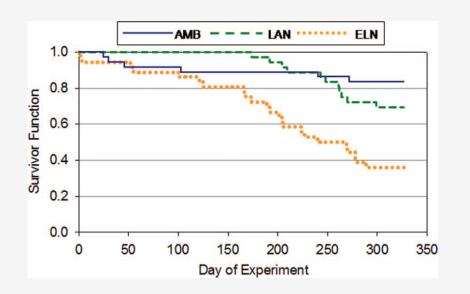


Moore et al (2011)



$$p = e^{(B_{mort} + I_{mort})t}$$

$$LogL(p \mid n, y) = y \log(p) + (n - y) \log(1 - p)$$



$$p = e^{(B_{mort} + I_{mort})t}$$

$$LogL(p \mid n, y) = y \log(p) + (n - y) \log(1 - p)$$

$$LogL(I_{mort} \mid n, y) = y(0.15 + I_{mort})t + (n - y)log[1 - e^{(0.15 + I_{mort})t}]$$

Lets try it!

$$LogL(I_{mort} \mid n, y) = y(0.15 + I_{mort})t + (n - y)\log[1 - e^{(0.15 + I_{mort})t}]$$

Function files

- binoLogLike.m
- binoNLogLike.m

Scripts

fit_mortality.m

