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The role of continental shelf systems as a sink or source of atmospheric altered by Varlablllty in atmospherlc
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suggests that some of the factors influencing shelf ecosystem We investigate the response of three shelf regions (Gulf of IW‘? ¥ é/‘ /B
production and CO, fluxes include variability in atmospheric forcing. Maine, Mid-Atlantic Bight and South Atlantic Bight) to 4 - :
variability in atmospheric forcing using two model
scenarios. o
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We use the NENA model to investigate how shelf carbon cycling will be
altered by variability in atmospheric forcing. NENA was developed to
investigate the transport and cycling of carbon and nitrogen to and
within the U.S. east coast coastal ocean margin [2],[3],[4],[5].
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“Present Day” - NENA 1.4
2004 to 2007, HyCOM, NCEP/NARR, pCO,AR= 377.4ppm
“Future” — NENA 4.1

Figure 3. Model Scenarios “Present” (left) &“Future” (right) Air-Sea
CO, Fluxes 2004 to 2007

Int | Variabilitv in Pri Producti as NENA 1.4 except NCEP/NARR+RegCM3 Anomalies, Table 2. Air-Sea CO, Fluxes (Mt C yr); “Present-day” (“Future”)
nterannual variapility in Primar roauction pCOAR=377.4ppm
y y it or ) CO,FLUX (Mt C GOM MAB SAB
RegCM3 Anomalies yr)
Atmospheric anomalies derived from two 10-year 2004 5.49 (4.95) 1.39 (1.06) 0.69 (-0.24)
simulations of the regional climate model, RegCM3 [1] 2005 2.46 (2.92) 1.00 (1.19) 0.87 (0.09)
Gulf of Maine representing present and end of century (doubled) CO,
o levels, forced by 100 year transient run of NCAR climate 2006 2.59 (2.79) 1.09 (1.03) 0.40 (-0.27)
1, x“‘ system model are used to perturb atmospheric forcing. 2007 3.25 (3.14) 1.46 (1.69) 0.31 (-2.22)
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Table 1. Modeled PP & Ob: ti . . 18 variability.
able 1. Modele servations Dissolved Inorganic Carbon (DIC) - SAB regime shifts from sink to
PP | 2004 NENA The NENA model captures shelf o® source!
(gC m? | 245 in MAB (Fennel |  2004: 216 in MAB primary production. Modeled BC_ o e (‘ \ ) ao0s _
R I I A< estimates are consistent with O E" 7 o Apply 1%t and 2 o aws awe 2 Work underway
2007: 257 in MAB observations but e ONo * I * SDet + CNog *p *LDet + . order Taylor _Series o Investigating proc-é.sses which
Observed*: underestimated especially : KW G0 (pC0s - pCOS) | +VDIC+V 4D, decomposition to South Atlantic Bight dominate CO, fl iability:
310 in MAB; 220 GOM (O'Reilly et al. offshore. However, the L Sea g ”““’W N CO, flux term to 08 om_ma e > TluX variaoility:
1987; Balch et al., 2008) o . " " i identify processes 00 M =2>Winds
290in NY Bight (Malone et al. 1983) biological model contains only 1 < L entily pr o e s e 2o >pCO, (T, S, NEP. TIC/TA mixing)
320 in SAB (Menzel et al. 1993) phytoplankton group (diatoms) ( a 275)(‘ 722 7F X { > which do_mlr_lz?lte CO, .‘-5 pCO; (1, S, f 9,
(*refer to Fennel et al., 2006 for reference details) which would account for this. Rl flux variability [6]. _2:4
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