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High Frequency Radar Observations of Tidal Current Variability
in the Lower Chesapeake Bay
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Figure 1. Chesapeake Bay radar site locations (green) and grid points J\\Z el lesiesae brasse enele Wil pais weriaess @ Jas P 4

for total velocity maps (black). NOAA ADCP stations (red) and water 20’ 15' 10" wind variance in low periods (2-7 days) at station §635563.

el aner saions (Be) S 76OW thant0.5 cycles/day indicate longer period weather driven The velocity variance is based on a spatial average over the
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The radar current maps were processed with standard least squares techniques employed by the HFR community using S 15 g j o
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M, major axis amplitude in different
areas of the radar grid indicated by
the shaded boxes seen in the map

- legend above. The M, amplitude of
./\’N w | water level at NOAA station 8638863

is shown in blue and is much less

Figure 6. The diurnal peak variance in winds correlates
with K, major axis amplitude averaged over the radar
grid.
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overlapping bi-monthly segments of time centered on the middle of each month. Consistency of major axis direction

through time was used as a quality check on the data and ultimately led to the decision to analyze a subset of data
collected from April 2009 to November 2015.
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Multi-year Record Results
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Figure 2. Tidal current constituent ellipses for the entire record (April 1, 2009 to Nov 30, 2015). Phase values are shown by the red dots. Dark right.

blue ellipses indicate counter-clockwise rotation and light blue are clockwise.
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\ { - \ { - The M, tidal contribution to surface flow varies spatially with higher major axis amplitudes near the mouth of the Bay and
g D\ ° o 5 o D\ ? ? 5 lower amplitudes near the mouth of the James River. The percentage of total current variance explained by the tidal
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ﬂ- ° o Ly, ‘\/ﬁ} | W) level to which the tidal current constituents vary over time. The variability of the K; component compared to diurnal
4 i P ‘ 140 4 l ; : 170 variance in winds suggest that the value of this major axis tidal constituent is increased in summer months coincident with
cooo an increase in the diurnal land-sea breeze. Variations in M, amplitude are complicated by several factors and a correlation
370N - Tt e 35 370N - 65 with salinity was not apparent.
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