Surface Current Mapping with High Frequency RADAR

Applications

- Search and rescue
- Navigation
- Pollution Tracking (Oil spills, red tides, ...)
- Recreational boating
- Fishing
- Assimilation into numerical circulation models to improve nowcast/forecast capabilities

Study Area & Antenna Sites

Source: http://www.cbbt.com/

AT OUR FIELD SITES

25.4 MHz CODAR Standard Range Antennas with co-located Tx/Rx MiniMac Field Computers Cell phone/Cable modem connections

Operating Costs

- Equipment (antenna, computer, electronics enclosure, software) roughly 150K / site
- Power / network connections / access to the site
 - CBBT \$220/ month
 - VIEW \$100/ month
- Technician
- Additional costs: Pattern measurements

Data Products Updated Hourly

-76.3

-76.2

-76.1

-76

-75.9

-75.8

(http://www.lions.odu.edu/org/cbc)

Shipping Channels

HF RADAR National Network

UCSD, Scripps Institute http://cordc.ucsd.edu/projects/mapping/maps

Radial Current Velocities...

A single antenna measures only one component of the water velocity, the speed of the water moving directly towards or away from it.

Radial vectors are output in range bins of 1.5 km and directional bins of 5 degrees.

ectional bins of 5 degrees.

Mapping requires at least two antennas!

are combined on a grid

The grid is designed by the operator.

Grid for Total Current Vectors

2 km Grid courtesy of CORDC National Network

Preserves orthogonality

Red points fail stability angle requirements

Radial Current Velocities

+ Grid

Around each grid point... Combine Radial Vectors (Least Squares Average)

Total Current Velocities

Data Quality

Calibration and Radial Coverage

Antenna Patterns

Radial Coverage

Challenges

- At a 360° site, antenna pattern measurement is essential
- Antenna isolation
- Summertime heat

Interference (Natural & Man-made)

Data Validation by Comparison

- Baseline (consistency)
- Tide
- Moored ADCP
- Towed ADCP

Photo Source: NOAA OSTEP report

Baseline Comparisons

Ideal antenna patterns

Measured antenna patterns

Tidal Analysis

Moored ADCP Comparison

Difference Statistics

<u>Site</u>	<u>Mean</u>	<u>S.Dev</u>
Cape Henry	16.2	14.0
Thimble Shoals	13.2	11.2
York Spit13.9	10.0	

Red line = CODAR Blue line = NOAA ADCP Black = |NOAA-CODAR|

CODAR Current Research & Development

- Bistatic system: enhance coverage by using precise timing so that Rx can receive sea scatter from another transmitter (e.g. on a buoy)
- RiverSonde
- Ship detection
- Shallow water waves

Source: CODAR Research & Development poster

Our Future Plans

- Incorporate data into GIS; map with other regional spatial data
- Continue to work with
 trajectories/ plume tracking
- Model comparisons
- Outreach (VA Aquarium, education)
- Web page & product development
 - Shipping channels
 - Ocean View beaches

AVHRR SST Daily Composite, September 24, 2007 from NOAA Coastwatch

ChesROMS model output

Acknowledgements

- Larry Atkinson and Jose Blanco
- CIT, MACOORA, NOAA
- CODAR support
- Advice and assistance from numerous other HF RADAR operators

