Modelling growth and reproduction of the Pacific oyster *Crassostrea gigas*: Advances in the oyster-DEB model through application to a coastal pond

Y. Bourlès, M. Alunno-Bruscia, S. Pouvreau, G. Tollu, D. Leguay, C. Arnaud, P. Goulletquer, S.A.L.M. Kooijman

Article Info

Article history:
Received 8 August 2008
Received in revised form 6 March 2009
Accepted 30 March 2009
Available online 17 April 2009

Keywords:
DEB theory
Modelling
Bivalves
Crassostrea gigas
Food Quantifiers
Temperature Effect
Coastal Environment

Abstract

A bio-energetic model, based on the DEB theory exists for the Pacific oyster *Crassostrea gigas*. Pouvreau et al. (Pouvreau, S., Bourles, Y., Lefebvre, S., Gangnery, A., Alunno-Bruscia, M., 2006. Application of a dynamic energy budget model to the Pacific oyster, *C. gigas*, reared under various environmental conditions. *J. Sea Res.* 56, 156–167.) successfully applied this model to oysters reared in three environments with no tide and low turbidity, using chlorophyll a concentration as food quantifier. However, the robustness of the oyster-DEB model needs to be validated in varying environments where different food quantifiers reflect the food available for oysters, as is the case in estuaries and most coastal ecosystems. We therefore tested the oyster-DEB model on *C. gigas* reared in an Atlantic coastal pond from January 2006 to January 2007. The model relies on two forcing variables: seawater temperature and food density monitored through various food quantifiers. Based on the high temperature range measured in this oyster pond (3–30 °C), new boundary values of the temperature tolerance range were estimated both for ingestion and respiration rates. Several food quantifiers were then tested to select the most suitable for explaining the observed growth and reproduction of *C. gigas* reared in an oyster pond. These were: particulate organic matter and carbon, chlorophyll a concentration and phytoplankton enumeration (expressed in cell number per litre or in cumulative cell biovolume). We conclude that when phytoplankton enumeration was used as food quantifier, the new version of oyster-DEB model presented here reproduced the growth and reproduction of *C. gigas* very accurately. The next step will be to validate the model under contrasting coastal environmental conditions so as to confirm the accuracy of phytoplankton enumeration as a way of representing the available food that sustains oyster growth.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

Energetic budget models have been widely applied to bivalves in aquaculture, especially for assessing the carrying capacity of coastal systems (e.g. Héral, 1993; Dowd, 1997; Bacher et al., 1998; Duarte et al., 2003; Grant et al., 2003). Such models are based on ecophysiological modelling that details the physiological processes and energetics of an organism in response to environmental fluctuations. Most energetic models of bivalves are net production models (e.g. Haren and Kooijman, 1993; Ren and Ross, 2005; Cardoso et al., 2006; Pouvreau et al., 2006). The DEB theory is based on physical and chemical assumptions for individual energetics (Kooijman, 1986, 2000), whereas the energetics in SFG models are empirically-based using allometric relationships (Lika and Nisbet, 2000; Nisbet et al., 2000; Van der Meer, 2006).

DEB theory has recently been more specifically applied to the Pacific oyster *Crassostrea gigas* (e.g. Van der Veer and Alunno-Bruscia, 2006). Pouvreau et al. (2006) validated the DEB model for this species reared in various different environments and concluded that the model could be applied in many ecosystems where *C. gigas* is cultured. Our study aims to refine the initial version of the oyster-DEB model by Pouvreau et al. (2006) and to test the updated version under new environmental conditions in an Atlantic oyster pond. More precisely,
this paper describes how effects of temperature on physiological processes have been modified and improved in the model, compared with the extended Arrhenius relationship proposed by Van der Veer et al. (2006). Model simulations were performed using a number of food quantifiers to identify those most suitable for predicting the growth of C. gigas. In the initial oyster-DEB model by Pouvreau et al. (2006), chlorophyll α concentration (chl-a) was the only food quantifier tested. Although chl-a is often used to estimate the phytoplankton biomass available for filter-feeders, there are many sources of discrepancies when using chl-a: (1) quantity of chl-a per phytoplankton cell varies a great deal over the year (Llewellyn et al., 2005), (2) the chl-a measured includes inputs from many sources, e.g. from macroalgae and river detritus particles containing both labile and refractory components, toxic algae, and picoplankton such as Chlorophyta flagellates, which are not retained or assimilated by C. gigas (Barillé et al., 1993; Dupuy et al., 2000b). Moreover, chl-a is a photosynthetic pigment and not a nutritive compound for filter-feeders. We therefore tested additional food quantifiers: particulate organic matter (POM), particulate organic carbon (POC) and, for the first time to our knowledge, phytoplankton enumeration expressed both in cell number per litre and in cumulative biovolume of cells. This assessment aimed to determine the most relevant quantifier to explain oyster growth and reproduction throughout the year.

2. Material and methods

2.1. Model description

A detailed description of the DEB model validated for C. gigas is given in Pouvreau et al. (2006). The general framework of the oyster-DEB model, i.e. the equations and most of the DEB parameters, was kept similar in the present study and hence only a brief summary of the main outline is presented here. The present study, however, focuses on new improvements concerning the temperature effect on oyster physiology and the choice of the most relevant food quantifier.

2.1.1. Model design

The DEB model assumes that the energy which is assimilated through ingested food is first stored in a reserve compartment. A fixed fraction \(\kappa \) of the energy flux from reserves is then used for growth and somatic maintenance (plus heating in endothermic animals), with a priority for maintenance. The remaining energy fraction \((1 - \kappa) \) is spent on maturity maintenance and maturation in embryos and juveniles or reproduction, i.e. gamete production and spawning, in adults. DEB parameter values are taken from Pouvreau et al. (2006) (Table 1). Notation and symbols follow Kooijman (2000). Quantities are expressed per unit of structural volume with square brackets [], or per unit of surface area of the structural body volume with braces {}.

All rates have dots, indicating the dimension per time.

The energy ingestion rate \(p_X \) is proportional to the surface area of the structural body volume \(V^{2/3} \) and depends upon food density \(X \) in the environment by a Holling type II functional response:

\[
p_X = \{p_{km}\} f V^{2/3}, \quad \text{with} \quad f = \frac{X}{X + X_K} \left(1 d^{-1}\right)
\]

where \(\{p_{km}\} \) is the maximum ingestion rate per unit of surface area and \(f \) is the dimensionless functional response which can vary between 0 and 1. \(X_K \) is the saturation coefficient, or Michaelis–Menten constant. It is the food density at which the ingestion rate is half the maximum. The assimilation rate \(p_A \) is given as:

\[
p_A = \{p_{km}\} f V^{2/3} \left(1 d^{-1}\right)
\]

where \(\{p_{km}\} \) is the maximum surface area-specific assimilation rate. Its precise value depends on the oyster diet. The ratio \(\{p_{km}\}/\{p_{km}\} \) gives the conversion efficiency of ingested food into assimilated energy, known as the assimilation efficiency \(AE \) called \(\kappa_X \) in the DEB theory.

Assimilation rate \(p_A \) contributes to the energy reserve dynamics given by:

\[
\frac{dE}{dt} = p_A - p_C \left(1 d^{-1}\right)
\]

where \(p_C \) is the utilisation rate of the reserve energy.

The kappa rule \(\kappa \) states that a fixed fraction of \(p_C \) is allocated to somatic maintenance and growth. Maintenance rate \(p_M \) is proportional to the structural volume \(V \), so \(p_M = \{p_M\} \cdot V \), with \(\{p_M\} \) the

Table 1

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Symbol</th>
<th>Units</th>
<th>Value</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primary parameters</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Arrenius temperature</td>
<td>(T_a)</td>
<td>K</td>
<td>5800</td>
<td>Van der Veer et al. (2006)</td>
</tr>
<tr>
<td>Half-saturation coefficient</td>
<td>(X_K)</td>
<td>J cm (^{-2}) d (^{-1})</td>
<td>560</td>
<td>Van der Veer et al. (2006)</td>
</tr>
<tr>
<td>Max. surface area-specific ingestion rate</td>
<td>({p_{km}})</td>
<td>J cm (^{-2}) d (^{-1})</td>
<td>24</td>
<td>Van der Veer et al. (2006)</td>
</tr>
<tr>
<td>Assimilation efficiency</td>
<td>(AE)</td>
<td>J cm (^{-2}) d (^{-1})</td>
<td>2295</td>
<td>Van der Veer et al. (2006)</td>
</tr>
<tr>
<td>Volume-specific maintenance costs</td>
<td>({p_{km}})</td>
<td>J cm (^{-2}) d (^{-1})</td>
<td>1900</td>
<td>Van der Veer et al. (2006)</td>
</tr>
<tr>
<td>Maximum storage density</td>
<td>({E_{st}})</td>
<td>J cm (^{-2})</td>
<td>0.4</td>
<td>Pers. unpubl. data</td>
</tr>
<tr>
<td>Volume-specific costs for structure</td>
<td>({E_{st}})</td>
<td>J cm (^{-2})</td>
<td>0.45</td>
<td>Van der Veer et al. (2006)</td>
</tr>
<tr>
<td>Structural volume at sexual maturity</td>
<td>(V_s)</td>
<td>cm (^{-3})</td>
<td>0.175</td>
<td>Van der Veer et al. (2006)</td>
</tr>
<tr>
<td>Fraction of (p_C) spent on maintenance plus growth</td>
<td>(\nu)</td>
<td>cm (^{-3})</td>
<td>0.7</td>
<td>Pouvreau et al. (2006)</td>
</tr>
<tr>
<td>Fraction of reproduction energy fixed in eggs</td>
<td>(\nu_R)</td>
<td>cm (^{-3})</td>
<td>0.715</td>
<td>Pouvreau et al. (2006)</td>
</tr>
<tr>
<td>Shape coefficient</td>
<td>(\nu_M)</td>
<td>cm (^{-3})</td>
<td>0.715</td>
<td>Pouvreau et al. (2006)</td>
</tr>
<tr>
<td>Additional parameters</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lower boundary of tolerance range</td>
<td>(T_L)</td>
<td>K</td>
<td>281</td>
<td>Van der Veer et al. (2006)</td>
</tr>
<tr>
<td>Upper boundary of tolerance range</td>
<td>(T_U)</td>
<td>K</td>
<td>305</td>
<td>Van der Veer et al. (2006)</td>
</tr>
<tr>
<td>Rate of decrease at lower boundary</td>
<td>(\lambda_L)</td>
<td>K</td>
<td>75000</td>
<td>Van der Veer et al. (2006)</td>
</tr>
<tr>
<td>Rate of decrease at upper boundary</td>
<td>(\lambda_H)</td>
<td>K</td>
<td>30000</td>
<td>Van der Veer et al. (2006)</td>
</tr>
<tr>
<td>Energy content of reserves (in ash free dry mass)</td>
<td>(\rho_E)</td>
<td>J mg (^{-1})</td>
<td>17.5</td>
<td>Deslous-Pouli and Héral (1988)</td>
</tr>
<tr>
<td>Gonado-somatic index triggering spawning</td>
<td>GI</td>
<td>%</td>
<td>40</td>
<td>Pers. unpubl. data</td>
</tr>
<tr>
<td>Temperature threshold triggering spawning</td>
<td>(T_S)</td>
<td>°C</td>
<td>22</td>
<td>Pers. unpubl. data</td>
</tr>
<tr>
<td>New boundary values of the optimal temperature range</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lower boundary of tolerance range</td>
<td>(T_{L_{opt}})</td>
<td>K</td>
<td>276</td>
<td>This study</td>
</tr>
<tr>
<td>Upper boundary of tolerance range for ingestion</td>
<td>(T_{U_{opt}})</td>
<td>K</td>
<td>298</td>
<td>This study</td>
</tr>
<tr>
<td>Upper boundary of tolerance range for respiration</td>
<td>(T_{U_{opt}})</td>
<td>K</td>
<td>305</td>
<td>This study</td>
</tr>
</tbody>
</table>
maintenance cost per unit of volume. Therefore, the structural body volume V changes as:

$$\frac{dV}{dt} = (\kappa \cdot \rho_c - \rho_m) / [E_c] \quad \text{\left(cm^3 \text{ d}^{-1} \right)}$$ \quad \text{(4)}$$

where $[E_c]$ denotes the volume-specific costs for structure. Kooijman (2000, chapter 3.4) showed that ρ_c, the energy consumed (fixed and dissipated) by the body tissues, can be written as:

$$\rho_c = \left[\frac{E}{\rho_G} + \kappa [E]\right] \left(\frac{[E] \rho_{Am} V^{2/3} + \rho_m V}{[Em]} \right) \quad \text{\left(J \text{ d}^{-1} \right)}$$ \quad \text{(5)}$$

where $[E]$ represents the energy density and equals E/V, and $[Em]$ is the maximum energy density in the reserve compartment. Thus, $[E]$ can vary between 0 and $[Em]$.

As κ is the fraction of the energy utilisation rate ρ_c spent on somatic maintenance plus growth, the remaining $(1 - \kappa)\rho_c$ is allocated to maturity maintenance and maturity in embryos and juveniles, or reproduction (i.e. gamete production and spawning) in adults. If the somatic and maturity maintenance rate coefficients are equal, the maturity maintenance ρ_i is proportionally to the structure V until juveniles reach sexual maturity at volume V_p. Maturity maintenance does not increase beyond this level. Thus, ρ_i is defined as:

$$\rho_i = \left(\frac{1 - \kappa}{\kappa} \right) \left(M_i \cdot \frac{\rho_m V}{\rho_m V} \right) \quad \text{\left(J \text{ d}^{-1} \right)}$$ \quad \text{(6)}$$

The dynamics for energy allocated first to maturation in juveniles, and then to the reproduction buffer E_r in adults are:

$$\frac{dE_r}{dt} = (1 - \kappa)\rho_c - \rho_i \quad \text{\left(J \text{ d}^{-1} \right)}$$ \quad \text{(7)}$$

Shell length L (cm) is proportional to the structural body volume V:

$$L = \frac{V^{1/3}}{e_m} \quad \text{(cm)}$$ \quad \text{(8)}$$

where e_m is the dimensionless shape coefficient, estimated at 0.175 by Van der Veer et al. (2006), Pouvreau et al. (2006), and Bacher and Gangnery (2006) who each used independent datasets.

2.1.2. Temperature effect (the Arrhenius relationship)

Physiological processes, e.g. assimilation, maintenance and structural growth in the DEB model, depend on the body temperature. Within a species-specific temperature tolerance range, physiological rates increase exponentially with temperature, as described by the Arrhenius relation:

$$k(T) = k_1 \cdot \exp\left(\frac{T_A - T}{T_l} \right) \quad \text{(9)}$$

where $k(T)$ is a physiological rate at ambient temperature T (in K), k_1 is its value at a chosen reference temperature T_1, and T_A is the Arrhenius temperature (in K) similar for all physiological rates of an animal. The basic Arrhenius correction $\exp\left(\frac{T_A - T}{T_l} \right)$ is applied in the description of temperature effect on physiological processes, giving 1 when $T = T_l$. For $C.\ gigas$, T_1 is commonly given at 20°C. Outside the optimal temperature boundaries defined as T_l (lower boundary) and T_H (upper boundary), i.e. at both low ($T < T_l$) and high ($T > T_H$) temperatures, physiological rates drop quickly (Fig. 1). In the DEB theory, T_l and T_H are assumed to be the same for all physiological rates. To take into account both boundaries, Eq. (9) can be re-written with the extensive Arrhenius relationship:

$$k(T) = k_1 \cdot \exp\left(\frac{T_A - T}{T_l} \right) \cdot \left(1 + \exp\left(\frac{T_A - T}{T_H - T_l} \right) \right) \quad \text{(10)}$$

Values of the temperature tolerance range boundaries T_l and T_H were estimated in this study relative to the initial oyster-DEB model (Pouvreau et al. 2006). Two main reasons account for this modification. Firstly, the model was previously tested for a temperature range from 8 to 25°C (Pouvreau et al. 2006). In many coastal culture sites, such as oyster ponds, the seawater temperature can reach extreme values during winter or summer. In our experimental oyster pond, seawater temperature varied between 3 and 30°C (see Results). Secondly, the DEB theory states that within the temperature tolerance range, physiological processes are affected in the same way by temperature, i.e. that T_l and T_H are assumed to be equal for all physiological rates (Kooijman, 2000). However, several studies have shown differences in temperature effect on feeding processes and respiration rate above a temperature threshold (e.g. Le Gall and Raillard, 1988; Bougrier et al., 1995; Ren et al., 2000; Hawkins et al., 2002; Mao et al., 2006; Le Moullac, 2008). Le Gall and Raillard (1988) showed a negative effect of high temperature (> 25°C) on $C.\ gigas$ growth rate. They explained this depression by a change of temperature effect between energy acquisition (food ingestion) which decreased significantly at temperatures above 25°C, and energy allocation (metabolism and/or maintenance), illustrated by increasing respiration rate above 30°C. Based on physiological measurements in acclimated individuals of $C.\ gigas$ over a range of temperature between 5 and 30°C, Bougrier et al. (1995) reported increasing oxygen consumption rate from 5 to 30°C and increasing clearance rate (food consumption) up to a maximum of 19°C beyond which the clearance rate decreased. Similarly, Ren et al. (2000) modelled the clearance rate of $C.\ gigas$ as a hyperbolic function of temperature, with a maximum value at 25°C (like the threshold value in Le Gall and Raillard, 1988), whereas oxygen consumption rate increased exponentially with temperature. Thus, we assumed that for temperatures above 25°C, oysters in our experimental pond neither fed (no assimilation) nor allocated energy to growth and maturity. Under this particular condition, respiration could correspond to somatic and maturity maintenance. We thus proposed two new extensive Arrhenius corrections (Fig. 1) with $T_1 = 3°C$ for both ingestion and respiration rates, and with $T_{1\text{ing}} = 25°C$ and $T_{1\text{resp}} = 32°C$, respectively for ingestion and
respiration rates. Though temperature >25 °C affected differently ingestion vs respiration rates, the Arrhenius temperature \(T_A \) remained the same for all physiological rates.

2.1.3. Food quantifiers

The half-saturation coefficient \(X_K \) was the only free-fitted parameter of the oyster-DEB model, as it is supposed to vary according to food quality (Kooijman, 2006), and therefore according to shellfish growing area. The initial version of the oyster-DEB model used chlorophyll \(a \) concentration (chl-\(a \)) to quantify the trophic resources. In our study, several more food quantifiers were tested to identify the most suitable one to quantitatively describe C. gigas growth and reproduction. The food quantifiers tested were: chl-\(a \), particulate organic matter (POM) and carbon (POC), and phytoplankton enumeration expressed in cell number per litre or in cumulative cell biovolume.

2.2. Environmental and biological data

2.2.1. Study area

The experimental site ‘Marais du Plomb’ is located in the northern part of Marennes–Oléron Bay (Fig. 2A). It consists of a series of ponds communicating with the sea by small channels (Fig. 2B); no renewal of seawater in the pond occurs for a few days at neap tide. The ponds are 1 m deep and 200 m\(^2\) in area. Oysters were placed in oyster bags attached to racks at mid-depth.

2.2.2. Forcing variables

Hydro-biological parameters were monitored in two complementary ways. Temperature (°C) and chlorophyll \(a \) concentration (chl-\(a \) in \(\mu g \text{ L}^{-1} \)) were recorded every 30 min with a continuous recording multi-parameter detector (DataSonde OTT Hydrolab DS_5X) immersed in the vicinity of the oyster racks (1.2 m). Seawater samples were also collected once a week to quantify particulate organic (POM) and inorganic (PIM) matter, and particulate organic carbon (POC) and to make phytoplankton identification and enumeration. Samples of seston for POM, PIM and POC determination were analysed as described in Aminot et al. (2004).

Identification and enumeration of phytoplankton species (or groups when identification was not possible to the species level, e.g. Euglenophyceae, Pleurosigma + Gyrosigma spp.) were done on weekly seawater samples fixed with Lugol’s solution (4 mL in 1 L sample). Size and volume of each species or group were estimated by microscopic analysis, according to Guillocheau (1988). The phytoplankton Tetraselmis spp and Kryptoperidium foliaceum, which showed high blooms and which were respectively reported in the literature as having a low food value (Robert et al., 2002) and some potentially toxic effects on bivalves (Landsberg, 2002), were excluded from phytoplankton enumeration to test the model.

2.2.3. Data validation

Five hundred 2-\(y \) old oysters were randomly sampled in a large population originating from Marennes–Oléron Bay. They were deployed in an experimental oyster pond (Fig. 2B) in January 2006. Oyster growth was assessed through biometric measurements on 30 oysters randomly collected on a monthly basis, and every two weeks from June to August, to identify and quantify spawning events. Oyster dry flesh mass (DFM) was obtained after a 72-hour freeze–drying cycle and determined to the nearest 0.001 g (Sartorius electronic balance, precision 0.0001).

2.3. Model simulations

The model was run on STELLA® 8.0 software, using the model parameters from Pouvreau et al. (2006) and the new boundaries for the temperature tolerance range. The half-saturation coefficient \(X_K \) was free-fitted for each food quantifier. The coefficients for conversion of oyster biological components to state variables and processes were taken from Pouvreau et al. (2006). The initial values of the state variables were as follows: energy in structure \(E_V \) was 5000 J, energy in storage \(E \) was 2000 J and energy in the reproduction buffer \(E_R \) was 2500 J. The structural volume \(V \) was calculated according to length \(L \), using the shape coefficient \(\delta \) and the formula \(V = (\delta \cdot L)^3 \), as in Pouvreau et al. (2006). The initial value of storage \(E \) and the reproduction buffer \(E_R \) were deduced to obtain the correct initial total dry mass (0.56 g), as well as realistic initial values for the energy density \([E] \) and gonado-somatic

Fig. 2. (A) Marennes–Oléron Bay and the location of the experimental study site. (B) The experimental study site showing the channel system and the oyster ponds.

index GI defined as the ratio between the gonad mass and the total flesh mass (i.e., structure, plus reserve and gonad). Since the temperature effect had been shown to be obviously different for ingestion and respiration rates, different boundary values of the temperature tolerance range were applied for each physiological process. The forcing variables used to run the model were the seawater temperature and food density expressed by the different food quantifiers. Phytoplankton enumeration, expressed in cell number per litre or in cumulative cell biovolume, was tested as a food quantifier in two ways: 1/ with the total phytoplankton composition identified and 2/ with only the “selected” phytoplankton composition, without the two excluded species (see Section 2.2.2).

Individual growth expressed in dry flesh mass (DFM) was simulated by the model with each food quantifier and then compared to observed DFM data. For each simulation, the goodness of fit of the model was estimated by fitting a linear regression between observed and simulated values, and comparing the resulting slopes and intercept of significant regressions to 1 and 0, respectively.

3. Results

3.1. Forcing variables

Temporal variations in the forcing variables between January 2006 and January 2007 are illustrated in Figs. 3 and 4, for the seawater temperature and food quantifiers, respectively. Seawater temperature showed a classical seasonal pattern from 3 °C to 30 °C between January and July 2006 (Fig. 3). POC varied from 0.2 µg L\(^{-1}\) in February to 2.7 µg L\(^{-1}\) in May (Fig. 4A). POM showed a similar pattern to POC, with concentration varying from 2 mg L\(^{-1}\) in February 2006 to 12 mg L\(^{-1}\) in January 2007 (Fig. 4B). Chl-a varied between 1 µg L\(^{-1}\) in February and August and 25 µg L\(^{-1}\) during spring algal blooms in April (Fig. 4C). These three food quantifiers exhibited only three common peaks identified in chl-a, POC and POM, whereas symbols from i to viii indicate peaks which were not identified in all of the food quantifiers.

3.2. Food quantifiers

Phytoplankton with the greatest contribution in terms of cumulative cell volume estimated in the oyster pond between January 2006 and January 2007 from size and mean volume (N. Guillocheau, 1988; laboratory measurements in this study).

<table>
<thead>
<tr>
<th>Species or group</th>
<th>Size in µm (minimum; maximum)</th>
<th>Mean biovolume (µm(^3) cell(^{-1}))</th>
<th>Cumulative cell biovolume (10(^{6})10(^{6}) µm(^3))</th>
<th>% of total volume</th>
</tr>
</thead>
<tbody>
<tr>
<td>Krytoperidinium foliaceum</td>
<td>28 x 25; 53 x 51</td>
<td>30000</td>
<td>33382</td>
<td>27.5</td>
</tr>
<tr>
<td>Pleurosigma elongatum</td>
<td>190 x 15; 205 x 20</td>
<td>150000</td>
<td>30990</td>
<td>25.4</td>
</tr>
<tr>
<td>Euglenophyceae (Class)</td>
<td>24 x 8; 50 x 15</td>
<td>3000</td>
<td>11860</td>
<td>9.7</td>
</tr>
<tr>
<td>Pleurosigma + Gymosigma spp.</td>
<td>53 x 13; 700 x 38</td>
<td>200000</td>
<td>10160</td>
<td>8.3</td>
</tr>
<tr>
<td>Entomoneis spp.</td>
<td>100 x 40; 100 x 55</td>
<td>50000</td>
<td>8680</td>
<td>7.1</td>
</tr>
<tr>
<td>Flavella sp.</td>
<td>180 x 72; 196 x 78</td>
<td>600000</td>
<td>3240</td>
<td>2.7</td>
</tr>
<tr>
<td>Tetraselmis sp.</td>
<td>8 x 6; 13 x 9</td>
<td>500</td>
<td>2617</td>
<td>2.1</td>
</tr>
<tr>
<td>Total cell volume</td>
<td>62000</td>
<td>122133</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The percentage of the cumulative cell volume is calculated according to the total cumulative cell volume.
peaks (1, 2 and 3, Fig. 4) whereas most of their other peaks were obviously different in terms of magnitude and timing (e.g. peaks i to viii, Fig. 4).

The other food quantifier tested in the oyster-DEB model was phytoplankton enumeration (Fig. 4D) expressed in cell number (cell L\(^{-1}\)) and in cumulative cell volume (µm\(^3\) L\(^{-1}\)). The two expressions of phytoplankton enumeration presented different phytoplankton dynamics, except for peak 2, which had also been seen in the three first food quantifiers (Fig. 4). When expressed in number of cells per litre, the total phytoplankton exhibited four high blooms above 10\(^6\) cell L\(^{-1}\). The highest ones reached about 5 · 10\(^6\) cell L\(^{-1}\) (September 6th) and 3.7 · 10\(^6\) cell L\(^{-1}\) in July because of the high temperature above 25 °C, which inhibited feeding processes (see Section 2.1.2). In autumn, the DFM again showed a significant increase, reaching more than 3 g by January 2007.

3.2. Oyster growth

The observed dry flesh mass (DFM) over the year showed two increasing periods, first between February and June, then from September to January (Fig. 5). In February, there was a slight decrease of the DFM from 0.75 g to 0.67 g. An important increase of DFM then occurred in spring and the level reached 3.09 g in late June, probably due to gametogenesis. During summer a significant decrease was observed until August, with DFM dropping to 1.75 g, most likely due to two processes. Firstly, two spawning events occurred, a massive one in early July and a minor one in early August. Secondly, no growth was observed at this time. Oysters did not benefit from the apparently suitable food density level (high POC and POM, Fig. 4) in July because of the high temperature above 25 °C, which inhibited feeding processes (see Section 2.1.2). In autumn, the DFM again showed a significant increase, reaching more than 3 g by January 2007.

3.3. Growth simulations

The growth of dry flesh mass (DFM) was simulated with the updated version of the oyster-DEB model, including the improvements incorporated for temperature effects on physiological processes. For each food quantifier tested, the model was adjusted for the half-saturation coefficient \(X_0\) only as this parameter is diet-specific. The first three food quantifiers, chl-a, POC and POM, commonly used in bivalve nutrition studies, provided the same simulation pattern, which had no optimal agreement with the observed growth (Fig. 5; Table 3). These simulations underestimated the observed dry flesh mass of C. gigas for the seven simulations carried out with each food quantifier, i.e. Chl-a (chlorophyll a), POC (particulate organic carbon), POM (particulate organic matter), phyto (phytoplankton), S-phyto (selected phytoplankton).

Table 3

<table>
<thead>
<tr>
<th>Regression parameters</th>
<th>Chl-a (p-value)</th>
<th>POC</th>
<th>POM</th>
<th>Phyto (in number)</th>
<th>Phyto (in volume)</th>
<th>S-phyto (in number)</th>
<th>S-phyto (in volume)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(R^2) (p-value)</td>
<td>0.767</td>
<td>0.754</td>
<td>0.739</td>
<td>0.688</td>
<td>0.572</td>
<td>0.865</td>
<td>0.669</td>
</tr>
<tr>
<td>Slope (p-value)</td>
<td>(1.92 · 10(^{-6}))</td>
<td>(3.85 · 10(^{-6}))</td>
<td>(4.85 · 10(^{-6}))</td>
<td>(2.07 · 10(^{-5}))</td>
<td>(2.81 · 10(^{-4}))</td>
<td>(2.25 · 10(^{-8}))</td>
<td>(3.39 · 10(^{-5}))</td>
</tr>
<tr>
<td>Intercept (p-value)</td>
<td>0.082</td>
<td>0.868</td>
<td>0.976</td>
<td>1.201</td>
<td>0.794</td>
<td>1.008</td>
<td>1.091</td>
</tr>
<tr>
<td></td>
<td>(0.082)</td>
<td>(0.311)</td>
<td>(0.822)</td>
<td>(0.335)</td>
<td>(0.249)</td>
<td>(0.940)</td>
<td>(0.642)</td>
</tr>
</tbody>
</table>

Both phyto and S-phyto are expressed in terms of cell number or cumulative biovolume. \(R^2\), coefficient of determination and corresponding p-value on null hypothesis. Slope and intercept values are given for each regression model, with corresponding p-values of testing slopes different from 1 and intercept different from 0.
expressed in cell biovolume provided the same simulation pattern as the first three food quantifiers, with a dry flesh mass underestimated in spring and summer, and over-estimated in the following winter. X_F values were $1.6 \cdot 10^5$ cell L$^{-1}$ and $1.4 \cdot 10^9$ µm3 L$^{-1}$, for phytoplankton enumeration expressed in cell number and biovolume respectively (Fig. 6B).

4. Discussion

In this study, several parameters of the existing oyster-DEB model developed by Pouvreau et al. (2006) were reconsidered and modified. The resulting second version of the model was then applied and validated on a new dataset of environmental and growth variables. The model was run with different food quantifiers, and phytoplankton enumeration demonstrated its reliability to represent the best the available food explaining observed oyster growth. We first discuss the food quantifier assessment, then analyse the design of the oyster-DEB model to explain how environmental parameters affect oyster physiology.

4.1. Food quantifier assessment

The half-saturation coefficient X_F, which describes food ingestion through the functional response f, was useful for making a methodical examination of the food quantifiers to highlight which could best quantitatively explain the growth pattern observed over the year. X_F was the only free-fitted parameter for each food quantifier tested, as it was diet-specific. The optimal value for chlorophyll a concentration (chl-a) was 8μg L$^{-1}$, in accordance with Pouvreau et al. (2006) X_F values, which varied from 3 to 17 µg L$^{-1}$. X_F values for the selected phytoplankton enumeration were $1.6 \cdot 10^5$ cell L$^{-1}$ and $1.4 \cdot 10^9$ µm3 L$^{-1}$ in cell number and in cumulative cell biovolume respectively. To our knowledge, this is the first time that a half-saturation coefficient X_F has been given for oysters fed with natural phytoplankton enumerated from direct microscopy analyses.

The two species removed from the total phytoplankton enumeration were among the most abundant species whether phytoplankton enumeration expressed in cell number per litre ($Tetraselmis$ sp.) or in cumulative algal biovolume ($K. foliaceum$). The selected phytoplankton data provided a better goodness of fit between observed and simulated oyster growth than did the total phytoplankton enumeration (Fig. 6, Table 3). It demonstrated that the two species taken out of the total phytoplankton composition were not a significant part of the phytoplankton sustaining observed oyster growth, although they were among the most abundant phytoplankton species. A recent experiment consisting in measuring growth of $C. gigas$ juveniles fed on $Tetraselmis suecica$ (monospecific diet) over seven weeks under controlled conditions showed that oyster ingestion for $T. suecica$ was very low and absorption efficiency almost null, and that no growth in terms of dry flesh mass occurred during the experiment (Boglino, 2008). In further studies on oyster food availability, the phytoplankton composition and species dynamics should be analysed and tested with the updated oyster-DEB model to determine the phytoplankton species that quantitatively contribute to oyster energetics.

Our results showed that selected phytoplankton enumeration in cell number per litre better represented the available food for oysters than did the same phytoplankton expressed in cumulative cell biovolume. This result could be explained by the dynamics of phytoplankton composition, dominated in spring by diatoms and in autumn by large dinoflagellates. Large dinoflagellates are known to be of poor food quality for bivalves (Landsberg, 2002) and many taxa are even potentially toxic (e.g. Gymnodiniaceae, Dinophyceae). The use of phytoplankton enumeration expressed in volume over-estimated the contribution of large dinoflagellates to the available food sustaining oyster energetics, compared with the major contribution by diatoms. In contrast, phytoplankton enumeration expressed in cell number per litre was more influenced by the numerous diatoms identified in the oyster

mass in spring and summer, and over-estimated it for the following winter. The optimised values for X_F were 9 µg L$^{-1}$, 1.3 µg L$^{-1}$ and 6.4 mg L$^{-1}$, for chl-a, POC and POM respectively.

Phytoplankton enumeration was used as a food quantifier in cell number per litre and in cumulative cell biovolume, first with the total composition identified throughout the year, and then with the selected phytoplankton composition only (see Section 2.1.3). When using the selected phytoplankton (S-phyto) expressed in cell number, both the magnitude and shape of the simulated DFM growth trajectories fitted quite well the observed growth (Fig. 6A). Compared to total phytoplankton composition (Fig. 6C and D), S-phyto in cell number led to the best fit of the regression model between observed and simulated DFM with slope and intercept which were not significantly different from 1 (p-value = 0.940) and 0 (p-value = 0.991) respectively (Table 3). In contrast, the selected phytoplankton

Fig. 6. Comparisons between observed (symbols, with bars for standard deviation) and simulated (solid dark line) dry flesh mass, from January 2006 to January 2007, with phytoplankton enumeration used as a food quantifier: (A) and (B) show the simulations obtained using selected phytoplankton composition expressed in number and volume, respectively. (C) and (D) show the simulations obtained with complete phytoplankton expressed in number and volume, respectively.
pond. Moreover, cell volume calculation from cell size and shape could increase inaccuracy of cumulative phytoplanktonic volume estimates.

Cell volume and phytoplankton carbon content relationships have been widely studied (e.g. Strathmann, 1967; Montagnes et al., 1994; Menden-Deuer and Lessard, 2000; Cornet-Barthaux et al., 2007). However, the allometric equations in these previous works were proposed for broad phytoplanktonic groups. Menden-Deuer and Lessard (2000) gave different C:volume relationships for diatoms, dinoflagellates and other protist phytoplankton, leading to global equations that incorporated many uncertainties in phytoplankton carbon estimation. In coastal ecosystems dominated by a small number of algal blooms (~10 during the year), such as the pond ecosystem of our study, specific equations identification and direct measures (by particle counter for instance) would probably be more powerful than the previously published general equations relying on estimated volume from cell size and shape for wide phytoplanktonic groups (diatoms or dinoflagellates). Furthermore, phytoplankton carbon content evaluation requires extensive environmental analysis and would therefore not be an easy food quantifier to measure for a model designed for simple use in diverse environments.

Chlorophyll a concentration (chl-a) has commonly been used to represent either phytoplankton biomass or the food filtered and digested by bivalves. Recently, Ren and Schiel (2008) proposed a DEB model specifically designed for C. gigas reared in New Zealand waters, which they validated on chl-a data. However, the usefulness of chl-a has been questioned in many studies (e.g. Llewellyn et al., 2005; Ren and Ross, 2005; Pouvreau et al., 2006). In our study, chl-a, POC, POM and phytoplankton enumeration were measured. As reported above, chl-a variations were very different from those of phytoplankton enumeration. Each food quantifier was tested independently. The first three food quantifiers presented the same pattern through the year (Fig. 4) and produced the same simulations (Fig. 5) with an underestimation of the dry flesh mass during summer and an overestimation the next winter. These environmental parameters did not provide good simulations of oyster growth dynamics. In contrast, the two direct indicators of selected phytoplankton biomass, i.e. phytoplankton enumeration expressed in cell number and in cumulative cell biovolume, provided reasonable agreements between observed and simulated dry flesh mass (Table 3). These indicators confirmed that C. gigas fed and grew on the available phytoplankton biomass, which was not well represented by chl-a throughout the year under the environmental conditions of our study. The DEB model designed for C. gigas in New Zealand by Ren and Schiel (2008) was successfully validated on chl-a data because the environmental conditions of their study differed from those in other ecosystems. Seawater temperature, chl-a and seston concentration (TPM) are lower in the New Zealand Sounds, with a smaller range of variation compared with environmental conditions found on French coasts (Ren et al., 2000). Under these specific conditions, chl-a is a reliable indicator of the phytoplankton available for oysters.

Although food quantifiers were tested independently, environmental parameters can affect more than one simultaneously, e.g. the total particulate matter (TPM) influences the clearance rate and thus the food ingestion. For further development of the oyster-DEB model, feeding processes should be defined more precisely but without making the model too complex, i.e. by limiting the number of parameters to describe the food acquisition processes (see Section 4.2 p. 16). As a complementary approach of describing with more details food acquisition in DEB model, we would recommend to define and test new food quantifiers, e.g. the chl-a:C ratio proposed by Cloern et al. (1995) (see Grangeré et al. 2009-this issue), which may represent accurately the food ingested by C. gigas. Similarly, a half-saturation coefficient which value would vary over seasons could improve the accuracy of the food quantifier because seawater composition is closely related to season; like the sources of chl-a and the dynamics of phytoplankton composition in the pond ecosystem, dominated by diatoms in spring and by dinoflagellates in autumn. Finally, using a multivariate functional response as a way to integrate several food sources is likely a promising approach (Kooijman, 2000, p. 160).

4.2. Oyster-DEB model

Some improvements were made to the oyster-DEB model in terms of 1) the effect of temperature on oyster physiology, 2) the spawning process and 3) the feeding process. First, the temperature effect on physiological processes was reassessed, with a fine distinction of the rules suggested in the DEB theory (Kooijman, 2000). The abundant literature on bivalve physiology (e.g. Widdows, 1976; Le Gall and Raillard, 1988; Bourgier et al., 1995; Ren et al., 2000; Hawkins et al., 2002; Mao et al., 2006) underlines the negative effect of temperatures above 20–25°C on filtration rate, while showing that respiration continues to increase over 30°C. The result for C. gigas is a decline in growth rate, or even a loss in weight above 25°C, whatever the trophic resources. Respiration represents the overall level of metabolic processes, and at high temperature, respiration rate increases despite a fall of ingestion rate and so of energy acquisition. Then above 25°C, we considered that respiration could correspond mainly to maintenance in non feeding (and non-growing) C. gigas, thus neglecting all other contributions (assimilation, overheads of growth and reproduction). The discrepancy between temperature effect on respiration and ingestion rates was integrated into the updated oyster-DEB model. Thus, the upper boundaries T1 of the Arrhenius correction relationship were 25°C and 32°C respectively for ingestion and maintenance rate. According to DEB assumptions, temperature affects equally all metabolic rates in the temperature tolerance range which is determined for oyster between 3°C and 25°C. The distinction made in the oyster-DEB model between energy uptake and use above 25°C illustrated the energetic deficiency of C. gigas in warm water. At the other limit of the temperature tolerance range, the lower boundary T2 of the Arrhenius correction relationship was kept similar for the two functions, at 3°C: a lower value than the 8°C proposed by Van der Veer et al. (2006). The application of the new temperature tolerance range upper boundaries for ingestion and maintenance rates, representing the energy acquisition and energy expenditure respectively, resulted in a slowing down of oyster growth in July, which fits well with biological observations made at this time, i.e. no growth, plus the two spawning events. Preliminary simulations of the oyster dry flesh mass based on the temperature tolerance range used in Pouvreau et al. (2006) and on selected phytoplankton enumeration, showed an overestimation of DFM in early July (Bourlès, unpublished data). Our finding that temperature ~25°C affects ingestion differently from respiration has no consequence on oyster energetics in the temperature tolerance range between 3°C and 25°C.

The two parameters controlling the spawning events were then also adjusted to allow several spawnings like those observed during
the summer in the oyster pond. The temperature threshold and
gonad-somatic index were free-fitted according to the condition
index observed in reared oysters. They were respectively estimated at
22 °C and 40%, which are slightly higher than the values given by
Pouvreau et al. (2006) in the first oyster-DEB model, (20 °C and 35%).
This may be explained by the specific environmental quality of the
oyster pond which showed high temperature variations and a
relatively high food level. Recently, Ren and Schiel (2008) pointed
out that DEB parameter values must be influenced by specific
environmental conditions even if they are supposedly species-specific.
Ren and Schiel (2008) re-estimated the main DEB parameter values
from specific experiments on C. gigas, but they validated their DEB
model outside the reproductive period, thus avoiding the need to
simulate spawning events. Although it appears difficult to integrate
reproductive processes in a bio-energetic model, these need to be
understood and quantified to include the triggering of spawning
events according to given environmental conditions. It is a necessary
step to estimate the quantitative energy budget of C. gigas through
time, whatever its living environment, whether this is for aquaculture
purposes or for the study of its widening natural distribution.

In our model, energy acquisition was only supported by food
ingestion and assimilation. The model did not take into account the
filtration and selection processes which are commonly integrated into
most ecophysiological models (e.g. Bacher et al., 1991; Barillé et al.,
1997; Campbell and Newell, 1998; Grant and Bacher 1998; Powell et al.,
1992; Raillard et al., 1993; Ross and Nisbet, 1990). The present model
assumes a simple Type 2 functional response. Although total seston and
inorganic particles obviously interfere in feeding processes
(Grizzle et al., 2006; Ren et al., 2000), unpublished experimental
data on oyster filtration and ingestion showed that the Type 2
functional response is appropriate for the Pacific oyster C. gigas.
Moreover, energy acquisition in the oyster-DEB model was built on
food quantifiers which represent the food available for oysters. Thus,
we chose to maintain the simple use of the functional response that
also has the advantage of involving few parameters. However, the
general feeding model developed by Ren and Ross (2005) is probably
suitable for all bivalve species, and could be investigated to further
improve oyster feeding response to a variable environment. In the
recent DEB model validated for C. gigas by Ren and Schiel (2008),
the feeding processes were also simplified to the Type 2 functional
response. However these authors also recommended that further
refinements of the model should include the effect of food quantity
and quality, i.e. the integration of supplementary environmental
variables in addition to the two forcing variables involved in the
oyster-DEB model presented here.

Assimilation efficiency was considered as a constant in the present
model. Filter-feeders consume suspended particles composed of a
mixture of detrital and phytoplankton organic matter containing both
labile and refractory components. Studies have reported varying
assimilation efficiency with seasonal variations of food quality and
phytoplankton composition (Hawkings and Bayne, 1985; Hawkings et al.,
1999, 2002). However, Ren et al. (2000) found a constant absorption
efficiency of 86% above approximately 5% seston organic content.
Overall, ecophysiological models are usually built with a constant
assimilation efficiency. Ren and Ross (2001, 2005) and Van der Veer et al.
(2006) reported an assimilation efficiency of 75% for various bivalves.
Following unpublished experimental data and the first oyster-DEB
model developed by Pouvreau et al. (2006), the same value was used in
the present model.

4.3. Conclusion

The validation of the new oyster-DEB model demonstrates its
suitability for simulating C. gigas growth and reproduction in rearing
sites with broader temperature variations than the controlled
conditions tested by Pouvreau et al. (2006). The updated oyster-DEB
model presented in this paper supports the “aim for generality” of this
earlier paper. The second version of the oyster-DEB model now needs
to be tested in different environments where C. gigas grows. Overall,
our model has proved to be a useful tool for testing food quantifiers on
a comparative basis. Although several food sources have been
identified for oyster feeding (e.g. Deslous-Paoli and Hérail, 1984;
Barillé et al., 1993; Dupuy et al., 2000a), it appears that phytoplankton
expressed in cell number per litre explains the greater part of
observed oyster growth. The oyster-DEB model could be used as a
generic model to further study C. gigas physiology in response to
environmental fluctuations (e.g. food selection processes according to
food resource quality, and spawning events in relation to summer
temperature and gonad development). The model should also be a
powerful tool as part of a larger ecosystem model to assess carrying
capacity of different areas where the Pacific oyster is cultured.

Acknowledgements

Y. Bourlès was supported by funding of Région Poitou-Charentes and
Ifremer during his PhD project. We would like to thank two
anonymous referees for their helpful comments on the manuscript.
The members of the European Research Group AquaDEB (http://www.
ifremer.fr/aquadeb/) are gratefully acknowledged for the stimulating
discussions and useful comments. This paper benefited from
helpful comments and English revision by H. McCombie.

References

comparison of the Marennes–Oleron Bay (France) and Carlingford Lough (Ireland)

de la croissance des huîtres (Crassostrea gigas) dans le bassin de Marennes-Oleron.

Bacher, C., Gangney, A., 2006. Use of dynamic energy budget and individual based models
to simulate the dynamics of cultivated oyster populations. J. Sea Res. 56, 140–155.

Barillé, L., Prous, J., Hérail, M., Bourgier, S., 1993. No influence of food quality, but ration-
dependent retention efficiencies in the Japanese oyster Crassostrea gigas. J. Exp.

creuse Crassostrea gigas dans un environnement estuarien. Aquat. Living Resour. 10,
317–325.

Bayne, B.L., Newell, R.C., 1983. Physiological energetics of marine molluscs. In:
pages 307–371.

Boglio, A., 2008. Les espèces phytoplanctoniques majeures des côtes atlantiques
françaises sont-elles équivalentes pour l’ingestion et la croissance de l’huître creuse
(Crassostrea gigas) ? Réponse par le biais d’une approche expérimentale. Master 2
report, Sciences de l’Univers Environnement Ecologie, vol. 6. Pierre & Marie Curie
University, Paris, 45 p.

relationships and effects of temperature on clearance and oxygen consumption

Camphell, D.E., Newell, C.R., 1998. MUSM0D, a production model for bottom culture of

relationships in bivalve species: a comparison of field data with predictions by the
Dynamic Energy Budget (DEB) theory. J. Sea Res. 56, 125–139.

chlorophyll:carbon ratio—the conversion factor between productivity and growth

gigas de 1 an et la nourriture potentielle disponible dans l’eau d’un bassin ostréicole.
Halotaxis 14, 79–90.

Crassostrea gigas (Thunberg) cultured in the bay of Marennes–Oleron. Aquat. Living
Resour. 1, 239–249.

modelling to assess the carrying capacity for multi-species culture within coastal

Dupuy, C., Pastoureaud, A., Ryckaert, M., Sauriau, P.G., Montanié, H., 2000a. Impact of
the oyster Crassostrea gigas on microbial community in Atlantic coastal ponds near