& o COMPUTERS -
_ v GEOSCIENCES

ELSEVIER Computers & Geosciences 34 (2008) 247-258

www.elsevier.com/locate/cageo

An educational interactive numerical model
of the Chesapeake Bay™

Jessica R. Crouch®™*, Yuzhong Shen®, Jay A. Austin®, Michael S. Dinniman

“Department of Computer Science, Old Dominion University, Norfolk, VA 23529, USA
®Department of Electrical and Computer Engineering, Old Dominion University, Norfolk, VA 23529, USA
“Large Lakes Observatory, University of Minnesota, Duluth, MN 55812, USA
dCenter for Coastal and Physical Oceanography, Old Dominion University, Norfolk, VA 23529, USA

Received 24 July 2006; received in revised form 23 March 2007; accepted 26 March 2007

Abstract

Scientists use sophisticated numerical models to study ocean circulation and other physical systems, but the complex
nature of such simulation software generally make them inaccessible to non-expert users. In principle, however, numerical
models represent an ideal teaching tool, allowing users to model the response of a complex system to changing conditions.
We have designed an interactive simulation program that allows a casual user to control the forcing conditions applied to a
numerical ocean circulation model using a graphical user interface, and to observe the results in real-time. This program is
implemented using the Regional Ocean Modeling System (ROMS) applied to the Chesapeake Bay. Portions of ROMS
were modified to facilitate user interaction, and the user interface and visualization capabilities represent new software
development. The result is an interactive simulation of the Chesapeake Bay environment that allows a user to control wind
speed and direction along with the rate of flow from the rivers that feed the bay. The simulation provides a variety of
visualizations of the response of the system, including water height, velocity, and salinity across horizontal and vertical
planes.
© 2007 Elsevier Ltd. All rights reserved.

Keywords: Modeling; Simulation; Visualization; Oceanography; Education; Interactive; Chesapeake Bay

1. Introduction

Geoscientists use numerical models to study a
variety of complex physical systems such as ocean
circulation, weather development, and landform
evolution. Researchers investigate scenarios with
these models by specifying boundary conditions

" Code available from server at http://www.iamg.org/
CGEditor/index.htm
*Corresponding author. Tel.: + 1757683 6001.
E-mail address: jrcrouch@cs.odu.edu (J.R. Crouch).

0098-3004/$ - see front matter © 2007 Elsevier Ltd. All rights reserved.

doi:10.1016/j.cageo.2007.03.017

that describe the external influences on a system and
compute predicted values for quantities of interest
based on the model’s equations. By carefully
controlling the forcing, an investigator can isolate
the role of specific forcing parameters. Numerical
simulations therefore enable scientists to make
forecasts and perform virtual experiments that are
impossible to perform in reality.

The ability to investigate the role of specific
forcing mechanisms should, in principle, make
numerical models ideal teaching tools, allowing
either an instructor to demonstrate a particular

www.elsevier.com/locate/cageo
dx.doi.org/10.1016/j.cageo.2007.03.017
http://www.iamg.org/CGEditor/index.htm
http://www.iamg.org/CGEditor/index.htm
mailto:jrcrouch@cs.odu.edu

248 J.R. Crouch et al. | Computers & Geosciences 34 (2008) 247-258

phenomenon, or students to engage in active
learning by using the model themselves. However,
three major factors have kept these models out of
the classroom. First, the complexity of these
models typically puts them out of the reach
of all but a small handful of researchers who
have devoted large amounts of effort to under-
standing the code and developing visualization
routines for the output. Second, models are
typically run in an asynchronous fashion, with
the investigator first setting up the conditions for
the model, then running the model, and finally
visualizing and interpreting the results. This
can make it difficult for students to generate
an “‘intuition” about the behavior of a system.
Finally, until recently, these models have required
computing resources unavailable in a typical
classroom.

While the expertise of professional scientists is
needed to design and implement numerical models,
members of the larger community can improve their
understanding of the environment through interac-
tion with simulation software. In communities
around the Chesapeake Bay, in particular, there is
broad interest in human impacts on the health of
the bay’s complex ecosystem (Boesch et al., 2001;
Officer et al., 1984). The environmental issues
surrounding the Chesapeake Bay make it an
especially important topic for public education
and discussion for ecological, economic, and poli-
tical reasons.

The Chesapeake Bay simulation program pre-
sented here is the product of a pilot project intended
to demonstrate the feasibility of making the
capabilities of the Regional Ocean Modeling System
(ROMS), one of the ocean circulation research
codes, accessible to non-expert members of the
community. The goal was to create a simulation
program that would be both scientifically sophisti-
cated and user-friendly. The design and implemen-
tation of this program involved re-engineering
ROMS to run interactively instead of in batch
mode, creating a new user-friendly graphical user
interface, and integrating real-time three-dimen-
sional data visualization routines. The resulting
simulation allows a user to control wind speed and
direction along with the rate of flow from the rivers
that feed the bay. The program responds to
changing conditions, takes tidal effects into ac-
count, and provides visualizations of water height,
velocity, and salinity across the bay’s surface and in
cross-section.

The remainder of this paper is organized as
follows. Section 2 surveys previous work in educa-
tion-oriented geoscience simulation, and Section 3
describes the software architecture of the Chesa-
peake Bay simulation program. Section 4 presents
case studies of Chesapeake Bay phenomena that can
be simulated, and Section 5 concludes this paper
and discusses possibilities for extending the current
proof-of-concept program.

2. Previous work

Science education researchers report that compu-
ter simulations with manipulable models can
foster inquiry-based learning (Windschitl, 2000).
Such programs allow students to ask questions,
form hypotheses, and perform experiments in a
simulated environment. This activity facilitates
exploration and discovery, allowing students to
practice the scientific method instead of merely
reading or hearing about the scientific work of
others. Although not a replacement for laboratory
or field exercises, simulations allow supplemental
experiments to be performed quickly, requiring
less equipment and student supervision than
traditional experiments. Topics like Newtonian
mechanics lend themselves to simple equation-
based simulation, and a wide variety of such
education-oriented simulation programs are avail-
able (de Jong et al., 1999; Dede et al., 1996; Hartel,
2000). Simulations for more complex phenomena
can be equally valuable but more difficult to
implement.

In the realm of geoscience education, a variety of
instructional software is available, but reports of the
educational use of numerical simulation programs
are relatively rare. Geoscience software that has
been effectively used for instruction includes role-
playing games in which students play the part of a
scientist investigating a virtual world (Saini-Eidukat
et al., 2002; Renshaw and Taylor, 2000), and data
analysis and visualization programs that allow users
to explore large sets of collected or simulated data.
For example, Ramasundaram et al. (2005) pre-
sented software that lets users interact with water
table data collected over a six year period in a 42-ha
flatwood forest. More recently, Winn et al. (2006)
presented software that enabled students to visua-
lize water movement and salinity data computed for
Puget Sound using the Princeton Ocean Model
(Blumberg and Mellor, 1987). This instructional
program allows exploration of the saved results of a

J.R. Crouch et al. | Computers & Geosciences 34 (2008) 247-258 249

simulation, and lets users select one of two data files
that were generated using different forcing condi-
tions. The program does not allow a user to specify
new forcing conditions and compute new simulation
results. Similarly, the EAGCM project (Chandler
et al., 2003) provides a graphical user interface for
visualizing data computed by a global climate
model, but the program does not provide users
with an ability to change forcing conditions and
compute the impact of such changes.

The distinction between interactive exploration of
recorded data and interactive numerical simulation
is an important one. Both can be interesting and
educationally valuable, but in the first case the
scenarios that a user can investigate are strictly
limited to the simulations that were recorded by the
software’s authors. In contrast, a simulation pro-
gram that gives the user control over model forcing
variables and then computes the effects of the
chosen settings provides access to a virtually limit-
less number of scenarios. A user who is given
control over the forcing conditions can engage in
genuine scientific inquiry by asking new questions,
forming hypotheses, and running simulation
experiments.

Few interactive numerical simulations exist that
are appropriate for non-expert users. Published
reports of educational simulation software indicate
that the models employed tend to be based on less
complex governing equations than those in re-
search-oriented simulations. An example is the
climate model presented by Bice (2001). This
teaching model represents the earth’s climate using
two reservoirs of thermal energy: one for the
atmosphere and one for the earth’s surface. This
model simulates gross climate change at a high level
of abstraction, but does not represent the spatial
distribution of temperature. Another example of an
educational simulation is WILSIM (Luo et al,
2004), a software program that models landform
evolution due to the erosion, diffusion, and deposi-
tion of soil over time. WILSIM uses a cellular
automata algorithm to represent the movement of
water and soil across a virtual landscape. The
cellular automata model succeeds in simulating
large scale effects, but has some limitations com-
pared to the more computationally intensive
approach of solving the hydrodynamic equations.
The authors report the simulation “is based on
‘very simple approximations intended to capture the
synoptic effects of fluvial processes’ (Chase, 1992).”
The authors further warn that the simplifications

lead to incorrect model behavior such as ‘“‘sediment
accumulation at the bottom of the channels in
rugged terrains, which is contrary to real world
situations.” In general, model simplifications
ease implementation and reduce computational
power requirements, but also limit a simulation’s
reliability.

An example of an equation-based, interactive,
and education-oriented geoscience simulation
program is the sea wave forecasting program
by Whitford (2002a,b). This program allows a
user to control model variables such as wind
speed and duration and computes new simulation
results for user-specified settings. The program
consists of a suite of MATLAB functions, so some
facility using the MATLAB command line environ-
ment is required in order to use this program.
While this is a reasonable expectation for the
university science students who form the program’s
intended user base, it does preclude use by more
casual users and anyone who lacks a MATLAB
installation.

In summary, most education-oriented geoscience
simulation programs use relatively simple models
partially because implementation of complex re-
search grade numerical models requires an unrea-
sonable amount of development effort for
educational software. The alternative approach
taken by some authors has been to generate data
files using a research-oriented numerical model and
to provide students with a data visualization
program that allows them to interactively explore
the saved simulation results. The available educa-
tional simulation programs therefore tend to work
interactively with a simplified model or be limited by
static data files. The Chesapeake Bay simulation
program presented in this paper was developed
using a different approach. Code for a graphical
user interface and visualization functions was
integrated with the code for a research grade ocean
circulation model. This produced a user-friendly
program that allows users to set forcing conditions
and interactively compute new simulation results by
engaging a sophisticated numerical model. One of
the main objectives of this project was to find a
balance between spatial/temporal resolution and
execution speed. While the system is not resolved at
the resolution that a research-quality implementa-
tion of the Chesapeake might be, it still captures the
essential character of estuarine circulation and runs
quickly enough that it can retain the interest of a
casual user.

250 J.R. Crouch et al. | Computers & Geosciences 34 (2008) 247-258

3. Simulation architecture and implementation

The three functional units that compose the
Chesapeake Bay simulation program are the gra-
phical user interface, the numerical ocean circula-
tion modeling code, and the visualization routines.
The data flow between these is illustrated in Fig. 1.
A description of the Chesapeake Bay is provided as
input data to the simulation. A description of each
of the simulation components follows.

3.1. Regional Ocean Modeling System (ROMS)

ROMS is an ocean circulation modeling program
created and supported by members of the oceano-
graphic research community (Shchepetkin and
McWilliams, 2005). The source code for ROMS
version 2.1 was the starting point for the develop-
ment of the Chesapeake Bay simulation program.
This research grade circulation model was selected
as the computational engine of the simulation
because it supports a wide variety of circulation
model properties. A subset of ROMS capabilities is
accessible in the first version of the interactive
Chesapeake Bay simulation, but the expansion of
this feature set will be straightforward since ROMS
is already capable of modeling properties such as
oxygen concentrations and pollutant distributions.

ROMS uses the hydrostatic primitive equations
to model ocean circulation. These equations are a
simplification of the Reynolds-averaged Navier—

User-controlled variables:
Update rate
River flow levels
Wind speed & direction

Graphical User
Interface

Stokes equations and describe fluid flow on a
sphere, under the assumption that the depth of the
fluid layer is much smaller than the sphere’s radius.
ROMS uses a finite difference type of approach to
solve the hydrostatic primitive equations on a grid
defined by terrain following coordinates called
sigma coordinates. This form of grid allows the
the topography of the ocean floor and coast to be
directly incorporated in a model. As input, ROMS
requires parameters for the grid and a set of forcing
conditions. Forcing conditions can include time and
location dependent functions for variables such as
wind speed and direction, atmospheric temperature,
precipitation, river flows, tides, and pollution
sources. During the solution phase ROMS com-
putes distributions for these and other variables
throughout the three-dimensional volume of a
model at each time step.

ROMS is written in Fortran 90 and consists of
more than 340,000 lines of source code. In order to
produce compact, efficient executables from a large
code base, ROMS makes extensive use of compiler
directives to exclude portions of the code that are
unnecessary for specific types of input models. This
code structure makes editing and recompilation of
the code necessary for each model variation.
Furthermore, ROMS is designed to run in batch
mode, managing all model input and solution
output through files. Interactive adjustment to
simulation variables is not supported. Visualizations
of output data, if needed, are generally created by

Selected portions of the
solution data arrays,
dependent on user-
specified visualization
settings

Solution data for:
Salinity
Velocity
Water Height
Float Position

Visualization
Images

Visualization

iROMS library

Routines

Fig. 1. Software architecture of interactive Chesapeake Bay simulation system.

J.R. Crouch et al. | Computers & Geosciences 34 (2008) 247-258 251

researchers during a post-processing step using
secondary software such as MATLAB. Therefore,
ROMS provides researchers with low-level control
and great modeling flexibility but lacks the user-
friendly facilities needed in software intended for
novice users. Indeed, graduate level oceanographers
often spend weeks to months learning to use
ROMS. The requisite level of user sophistication
precludes ROMS use by most students and casual
users.

Modifications to ROMS were necessary in order
to make its powerful numerical modeling capabil-
ities more accessible. The outermost loop in the
ROMS source code advances the simulation time
and calls routines to set up and solve equations for
the current time step. The primary modification to
ROMS was the removal of this time-stepping loop
and the addition of new top level functions to
manage simulation time increments, update the
forcing conditions at the beginning of each update,
and pass the computed solution data to the
visualization routines at the end of each update.
The time step size used by ROMS cannot be
controlled directly by a user because it impacts the
numerical stability of the solution routines. How-
ever, ROMS can integrate the results from multiple
time steps so that effects at different time scales can
be examined. User changes to the simulation update
rate are implemented as changes to the integration
period. Originally written as a standalone execu-
table program, the modified ROMS code was
compiled into a linkable library called iROMS
(interactive ROMYS).

3.2. Chesapeake Bay model

The iROMS code used for the Chesapeake Bay
model was configured by enabling the algorithms
for computing salinity levels, tracking floating
objects, using a K-profile parameterization for
vertical mixing (Large et al., 1994), controlling tides
at the open boundary, and managing point sources
of momentum, temperature, and salinity. A com-
putational grid was defined to represent the entire
Chesapeake Bay, stretching approximately
200 miles from Havre de Grace, Maryland, to Cape
Henry, Virginia. Portions of several rivers feeding
the bay are represented in the grid, including the
Susquehanna, Potomac, James, Rappahannock,
and York Rivers.

The dimensions of a computational grid are an
important factor in the computational complexity

of the iROMS solution algorithm, so the desired
simulation update rate influenced the design of a
grid for the Chesapeake Bay model. The goal for the
Chesapeake Bay grid was to be small enough that
the simulation would complete a solution step in
less than a second while running on a PC and yet be
large enough to demonstrate interesting effects in
the bay. The chosen grid dimensions are 20 x 50 x
10 (east—west x north-south x vertical layers).
Latitude, longitude, and altitude coordinates are
stored for each grid vertex. Research versions of the
Chesapeake Bay model typically have higher grid
resolution and require offline computation that can
take hours to complete on a cluster computer. With
future advances in computational speed, the grid
resolution for the Chesapeake Bay could easily be
increased. User-adjustable grid resolution is part of
planned future work. Adjustable grid resolution
would allow students to examine how the computed
circulation features vary with grid size and how the
required computation time is impacted by the
resolution.

3.3. Graphical user interface

A user interface was implemented in C + + using
the Fast Light Toolkit (fitk), an open source cross
platform library. The user interface code contains
the program’s main event loop that controls the
simulation’s execution and flow of data at the
highest level. Whenever a user changes the setting of
one of the on-screen controls, the event loop
receives notification of the change and updates the
parameters passed to iROMS at the beginning of
the next solution step. Calls to iROMS are
implemented by spawning new threads. The multi-
threaded nature of the program enables the user
interface to provide smooth interactivity without
blocking while waiting for iROMS to finish
computing a solution step. Another benefit of the
multi-threaded implementation is that the simula-
tion can take advantage of a dual processor PC by
continuously running iROMS calculations on one
processor while using the other processor for
interface and graphics functions.

The interface provides two categories of controls:
those that affect the numerical model and those that
affect the visualization of computed results. Con-
trols affecting the numerical model include a
selection box for the update rate, sliders to set river
flow rates, and a slider and dial for setting the wind
speed and direction. The interface displays the

252 J.R. Crouch et al. | Computers & Geosciences 34 (2008) 247-258

simulation time, updating it after each solution time
step. An update frequency in the range of 1-24 h can
be selected, influencing the degree of variability due
to tidal effects a user will notice. The rate of flow
can be set for the three largest rivers feeding the bay:
the Susquehanna, Potomac, and James Rivers. For
this simulation the wind is assumed to be constant
across the surface of the bay, and users may select a
single wind speed and direction.

Controls affecting the visualization of the com-
puted results include check boxes to select a
particular variable for visualization and a slider to
select the depth of the grid layer to visualize. Either
the water’s salinity, velocity, height level, or the
position of floating markers can be selected for
visualization. Since the computed results are three-
dimensional, plotting data on a map of the bay
requires a two-dimensional subset of the data be
selected. The depth slider allows users to select any
of the grid’s 10 vertical layers for visualization. The
user interface is shown in Fig. 2.

3.4. Visualization routines

Visualization routines were written using Open-
SceneGraph, an open source cross platform gra-

E3 Interactive Chesapeake Bay Simulation
Simulation Controls

Scenarios...

Simulation Time

Days: Pause Update Fregusng_

[E00 f—fF—7——"— 0 T

Anormal

Hours: 0.0 Resume
Fresh Water Runoff Wind
{cubic meters per second) N
Direction
S River
- (from which the
l180 _:‘ wind is blowing) W E
normal
Potomac River s
'ﬁ —7
A normal
James River Speed (miles per hour)

Depth View

phics library. Plan view and depth view windows
provide orthogonal visualizations of the bay. The
plan view displays a map of the bay and surround-
ing coastal areas, complete with rivers and nearby
cities. The latitude/longitude coordinates associated
with computational grid vertices correspond to
(x,y) points on the map plot. Data values are
assigned to map locations based on these coordi-
nates and are linearly interpolated between vertices.
The following types of visualizations can be selected
for the plan view.

Water height is a scalar quantity represented by
applying color mapping to the bay. With a 1h
update rate, tidal variations in water height are
evident using this visualization. The water height
visualization is displayed in Fig. 3(a).

Salinity is another scalar quantity represented via
color mapping. Variations in fresh water flow
from the rivers feeding the bay cause pronounced
changes in salinity. Salinity visualizations are shown
in Fig. 6 for the example simulation described in
Section 4.3.

Velocity vectors of unit length are drawn on the
bay to show the direction of water flow. The vectors
are color mapped to indicate the magnitude of the
velocity. This alternative to using arrow length to

- [5)x]

Plan View

I Salinity

™ Velocity Susquehanna River

I Height

F Floats Baltimore, MD - X

ocean

surface Washington DC
i Polomac ||
River

Py Richmond, VA

James River

ocean
floor

Fig. 2. Interface for Chesapeake Bay simulation program.

J.R. Crouch et al. | Computers & Geosciences 34 (2008) 247-258 253

Susquehanna River

Baltimore, MD .

Washington DC

Potomac ;|
River

o Richmond, VA

James River

Susquehanna River

Baltimore, MD g

Washington DC

Potomac
River

o Richmond, VA

James River

0O 005 0.1 015 02m/s
| —

Fig. 3. Plan views. (a) Water height levels displayed via colormapping. (b) Velocity direction vectors with colormapped magnitudes.

indicate vector magnitude eliminates the problem of
large magnitude vectors obscuring neighboring
vectors and cluttering the display. Changes in the
wind tend to affect water velocity. This visualization
is shown in Fig. 3(b).

Particle tracking allows visualization of water
flow over time. Five floating virtual particles are
dropped onto the surface of the bay every 20
simulation days. The particle positions are tracked
in iIROMS and plotted at each time step. This
visualization shows how winds, rivers, and tides can
affect the path of floating objects over a multi-week
time scale. Particle markers can be seen in the plan
view portion of Fig. 2.

The depth view window provides a visualization
of a cross-section of the bay that follows a center
channel running roughly north to south. The bay’s
geometry in this view accurately represents the
topography of the floor and the water’s time and

location dependent height variations. The salinity
distribution on the cross-section is displayed via
color mapping, as shown in the lower left corner of
Fig. 2.

3.5. Performance

The Chesapeake Bay simulation program runs at
interactive rates on currently available PC hard-
ware. On a 3.2 GHz dual Intel Xeon processor PC,
25 simulation days pass per minute of user time. On
a laptop PC with a single 1.6 GHz Intel processor,
the simulation runs at a rate of 11 simulation days
per minute. This means that when the visualization
is set to update at the end of each hour of simulation
time, the results are refreshed every 0.10-0.23s.

The program is currently available for down-
load from the authors’ web site at http://www.d.
umn.edu/~jaustin/CHIMP.html as a self-installing

http://www.d.umn.edu/jaustin/CHIMP.html
http://www.d.umn.edu/jaustin/CHIMP.html
http://www.d.umn.edu/jaustin/CHIMP.html

254 J.R. Crouch et al. | Computers & Geosciences 34 (2008) 247-258

executable program that will run under the Micro-
soft Windows operating system. Because the pro-
gram contains no platform dependent source code,
there is no obstacle to compiling the simulation
program for other operating systems or other types
of computer hardware.

4. Case studies

The Chesapeake Bay simulation program is user-
friendly and appropriate for a variety of users
including middle school, high school, and university
students, museum visitors, and other members of
the community. It is capable of demonstrating the
basic features of the bay, including layered circula-
tion, wind mixing, rotationally controlled flow,
wind-driven flow, and tides. Three simulated
scenarios that illustrate interesting Chesapeake
Bay phenomena are described in the following
sections. Specific user instructions for replicating

each scenario are included, along with a description
of the effects observed in the simulation.

4.1. Case study 1: normal estuarine salinity and
circulation

Estuaries such as the Chesapeake Bay are
continuously fed by a source of fresh water at their
head. The result is that normal estuarine circulation
consists of upper layers of relatively fresh water
flowing out of the bay and lower layers of heavier,
saltier water flowing up into the bay. Due to mixing
effects, water closer to the head of the bay is less
salty than water near its mouth.

User instructions: Set the update rate to 1h, and
set the Susquehanna River flow to a normal or
higher than normal level. Turn the wind off.
Observe changes in the salinity over the next 90
simulation days. Next, set the update rate to 12h,

Fig. 4. Top: Initial salinity distribution in bay at beginning of simulation. Bottom: Salinity distribution in bay after stratification has

formed.

J.R. Crouch et al. | Computers & Geosciences 34 (2008) 247-258 255

and examine the velocity vector visualization for the
surface and bottom layers of the bay.

Observed effects: Throughout the simulation the
plan view shows low salinity at the head of the
estuary and higher salinity at the mouth, where
oceanic water is being pulled into the estuary. The
cross-section initially shows homogeneous salinity
through vertical water columns, with fresher water
near the head of the bay and saltier water near the
mouth. Without wind to mix the water, the denser,
saltier water sinks to the bottom and salinity
stratification becomes apparent in the depth view.
The depth view also shows a fresh water/salt water
boundary near the head of the Susquehanna that
fluctuates with the tides. Fig. 4 shows snapshots of
the salinity distribution that evolves in the depth
view during this simulation. When the update rate is
changed to 12h so that the simulation results are
averaged over a tidal period, the bay’s two layer
flow becomes evident. The velocity vectors along the
bottom of the bay show water flowing toward the
bay’s head while the vectors in the surface layer
show water flowing toward the bay’s mouth. This
sub-tidal two layer flow is an important feature of
stratified estuaries like the Chesapeake Bay.

4.2. Case study 2: wind effects

During the summer the Chesapeake Bay has few
strong wind events, leading to stratification as seen
in the first case study. The isolation of bottom layer
of water from the surface combined with bacterial
decomposition of detritus results in oxygen depletion

at the bottom of the bay. A severe storm will mix the
water column, improving oxygenation. Storm winds
from the south can also affect water height near
Maryland by blowing water into or out of the north
end of the bay.

User instructions: Set the update rate to 1 h. Turn
the wind off for 90 days, then turn on a strong north
wind. Observe changes in the bay’s conditions using
the salinity, height, velocity, and floating particle
visualizations.

Observed effects: The water’s surface height is
visibly depressed when the north wind is turned on,
and the salinity stratification is lost as the wind
increases the mixing between the upper and lower
layers of water. The result is that vertical water
columns take on more uniform salinity values, as
shown in Fig. 5.

4.3. Case study 3. plumes

Because of the direction of the earth’s rotation,
water leaving the Chesapeake Bay tends to flow
along the Virginia Beach coast and entering water
tends to flow along the east side of the bay. This
leads to a plume of high salinity along the southeast
coast of the bay. When a north wind blows, the
plume tightens against the shore due to Ekman
transport in the surface layer. Ekman transport
describes the tendency of surface water to travel to
the right of the direction of the wind in the northern
hemisphere. In the case of a north wind, surface
waters in the central bay move west, flattening the
plume against the shore. Conversely, a south wind

0 5 10 15 20 25 30 35 psu
T I

Fig. 5. This cross-section of Chesapeake Bay during a strong north wind shows reduced water height at bay’s head due to wind pushing
water out. Salinity stratification has been eliminated by wind mixing water.

256 J.R. Crouch et al. | Computers & Geosciences 34 (2008) 247-258

will cause the plume to spread out into the bay as
the surface water moves east.

User instructions: Start with the wind off and
the Susquehanna flow set low for 30 simula-
tion days. Then set the Susquehanna flow to high
for 60 days. Finally, turn on a gentle wind from
the north and observe changes in the salinity
distribution.

Observed effects: When the increased volume of
fresh water from the Susquehanna reaches the
mouth of the bay, it turns to the right and moves
south along the coast as a plume. When the north
wind is turned on, the plume tightens up against the
shore below the mouth of the Potomac, as shown in
Fig. 6. If the experiment is repeated using a south
wind, the plume diffuses into the bay.

Susquehanna River

Baltimore, MD ®

Washington DC
o

Potomac ;!
River

& Richmond, VA

James River

5. Conclusions and future work

As demonstrated through the three example
scenarios, the Chesapeake Bay simulation program
accounts for a variety of complex influences on the
bay, including variations in tides, winds, and river
flows over time and the effects of the earth’s
rotation. This level of complexity is possible because
a research-grade numerical circulation modeling
code is employed as the computational engine of
the simulation. In addition to providing instruc-
tional software for the Chesapeake Bay, the more
general achievement of this simulation development
has been to demonstrate that it is possible to run
small numerical models on PCs in an interactive
manner. Real-time interaction with an interesting

Susquehanna River

Baltimore, MD o o\ -

Washington DC
@

Potomac ||
River

o Richmond, VA

James River

0 5 10 15 20 25 30 35 psu
e

Fig. 6. (a) Surface salinity of Chesapeake Bay after weeks without wind and rain. (b) A high salinity plume along southeast coast of bay
develops when scenario (a) is affected by a storm, simulated by increased river flow and wind.

J.R. Crouch et al. | Computers & Geosciences 34 (2008) 247-258 257

numerical model marks an important step beyond
previous work that provided interactive visualiza-
tion of stored simulation data. This demonstration
of true interactive simulation should motivate
future efforts to create educational software by
packaging scientific research code in an accessible
manner.

The Chesapeake Bay simulation program has
received positive reviews from students, educators,
and others after demonstrations that have included
an Earth Day event at Old Dominion University, an
Oceanography Day presentation at a primary
school, and other formal and informal presentations
with students ranging from second grade to under-
graduate university students. More formal evalua-
tion of the program’s educational utility is planned
after the development of curriculum materials to
accompany the program is complete. The possibility
of placing the program in a marine science museum
exhibit is also being investigated.

Development efforts for the Chesapeake Bay
simulation program are proceeding in two direc-
tions. First, there is no reason that the simulation
program needs to be limited to the Chesapeake Bay
location. ROMS research models have been devel-
oped for a variety of bodies of water, and one goal is
to make more of these models accessible through an
interactive simulation program. Instead of writing
and compiling a new program for each location, the
plan is to encapsulate all the pertinent information
about a model’s geometry, grid characteristics, and
forcing conditions (e.g., the number and names of
rivers feeding the bay) in a data file that can be
loaded using a general purpose interface program.
The loaded data will be used to configure an array
of user interface controls and the visualization
options. A substantial amount of software design
and engineering will be required to adapt the
Chesapeake Bay simulation program to accommo-
date this level of generality, but the end result will be
a much more flexible simulation tool. After the
model data file format is established and published,
any researcher who develops a ROMS model will be
able to adapt it for use in the interactive simulation
environment. An online repository of downloadable
models is envisioned for the future.

The second development direction is expansion of
the set of ROMS features that are accessible
through the interactive environment. Much of the
functionality available in ROMS remains untapped
by the Chesapeake Bay simulation program. Visua-
lization of pollution and oxygenation distributions

will be added, along with user controls to govern the
number, location, and type of pollution sources and
the computational grid dimensions. A new type of
visualization is planned that will allow a user to
simulate a real world experiment by dropping virtual
buoys into the water and plotting the data that is
measured at those locations. These future develop-
ments will make the interactive simulation environ-
ment an even more powerful educational tool.

Acknowledgments

This project was sponsored by the Virginia
Governor’s Research Initiative through the Office
of Research at Old Dominion University’s Office of
Research. The authors thank John Klinck, Lee
Belfore, and Elizabeth Smith for their assistance.

References

Bice, D.M., 2001. Using STELLA models to explore the
dynamics of earth systems: experimenting with earth’s climate
system using a simple computer model. Journal of Geoscience
Education 49 (2), 170-181.

Blumberg, A.F., Mellor, G.L., 1987. A description of a three-
dimensional coastal ocean circulation model. In: Heaps, N.S.
(Ed.), Three-Dimensional Coastal Ocean Models. American
Geophysical Union, Washington, DC, pp. 1-16.

Boesch, D.F., Brinsfield, R.B., Magnien, R.E., 2001. Chesapeake
Bay eutrophication: scientific understanding, ecosystem re-
storation, and challenges for agriculture. Journal of Environ-
mental Quality 30, 303-320.

Chandler, M., Shopsin, M., Richards, S., 2003. EQGCM: real-
time global climate modeling research for the classroom.
Geological Society of America 35 (6), 118.

Chase, C.G., 1992. Fluvial landsculpting and the fractal
dimension of topography. Geomorphology 5, 39-57 (special
issue on fractals).

de Jong, T., Martin, E., Zamarro, J.-M., Esquembre, F., Swaak,
J., van Joolingen, W.R., 1999. The integration of computer
simulation and learning support: an example from the physics
domain of collisions. Journal of Research in Science Teaching
36 (5), 597-615.

Dede, C.J., Salzman, M.C., Loftin, R.B., 1996. The development
of a virtual world for learning Newtonian mechanics. In:
MHVR ’94: Selected Papers from the First International
Conference on Hypermedia, Multimedia, and Virtual Reality:
Models, Systems, and Applications. Springer, London, UK,
pp. 87-106.

Hartel, H., 2000. xyZET: a simulation program for physics teaching.
Journal of Science Education and Technology 9 (3), 275-286.

Large, W.G., McWilliams, J.C., Doney, S.C., 1994. Oceanic
vertical mixing: a review and model with a nonlocal boundary
layer parameterization. Reviews of Geophysics 32, 363-403.

Luo, W., Duffin, K.L., Peronja, E., Stravers, J.A., Henry, G.M.,
2004. A web-based interactive landform simulation model
(WILSIM). Computers & Geosciences 30, 215-220.

258 J.R. Crouch et al. | Computers & Geosciences 34 (2008) 247-258

Officer, C.B., Biggs, R.B., Taft, J.L., Cronin, L.E., Tyler, M.A.,
Boynton, W.R., 1984. Chesapeake Bay anoxia: origin,
development, and significance. Science 223 (4631), 22-27.

Ramasundaram, V., Grunwald, S., Mangeot, A., Comerford,
N.B., Bliss, C.M., 2005. Development of an environmental
virtual field laboratory. Computers & Education 45 (1), 21-34.

Renshaw, C.E., Taylor, H.A., 2000. The educational effectiveness
of computer-based instruction. Computers & Geosciences 26
(6), 677-682.

Saini-Eidukat, B., Schwert, D.P., Slator, B.M., 2002. Geology
explorer: virtual geologic mapping and interpretation. Com-
puters & Geosciences 28 (10), 1167-1176.

Shchepetkin, A.F., McWilliams, J.C., 2005. The regional oceanic
modeling system (ROMS): a split-explicit, free-surface,
topography-following-coordinate oceanic model. Ocean
Modeling 9, 347-404.

Whitford, D.J., 2002a. Teaching ocean wave forecasting using
computer-generated visualization and animation—part 1: sea
forecasting. Computers & Geosciences 28 (4), 537-546.

Whitford, D.J., 2002b. Teaching ocean wave forecasting
using computer-generated visualization and animation—
part 2: swell forecasting. Computers & Geosciences 28 (4),
547-554.

Windschitl, M., 2000. Supporting the development of
science inquiry skills with special classes of software.
Educational Technology Research and Development 48 (2),
81-95.

Winn, W., Stahr, F., Sarason, C., Fruland, R., Oppenheimer, P.,
Lee, Y.-L., 2006. Learning oceanography from a computer
simulation compared with direct experience at sea. Journal of
Research in Science Teaching 43 (1), 25-42.

	An educational interactive numerical model �of the Chesapeake Bay
	Introduction
	Previous work
	Simulation architecture and implementation
	Regional Ocean Modeling System (ROMS)
	Chesapeake Bay model
	Graphical user interface
	Visualization routines
	Performance

	Case studies
	Case study 1: normal estuarine salinity and circulation
	Case study 2: wind effects
	Case study 3: plumes

	Conclusions and future work
	Acknowledgments
	References

