Why can wind delay the shedding of Loop Current eddies?

Yu-Lin Eda Chang^{1,2} and Lie-Yauw Oey¹

1. Program in Atmospheric and Oceanic Sciences, Princeton University, USA

2. Dept. of Earth Sciences, National Taiwan Normal University, Taiwan.

Period :2 ~20months

Westward speed (~ $-\beta R_d^2$) > growth rate

Nof [2005,JPO]

What I will show and explain:

- Shedding is delayed by wind
- Why it is delayed?
- The dynamics are closely connected to LC and ring sizes; it is also related to the way mass is redistributed within the Gulf → which leads to different mass exchanges

Princeton Ocean Model

Growing eddy and delay shedding

Circulation

5 years, upper 200m average

Reduced gravity Experiments

RGExp	T^{xbody} (m ² s ⁻²)	P _{shed} (days)	
1	0	260	
2	2×10 ⁻⁴	280	
3	8×10 ⁻⁴	360	
4	-2×10^{-4}	245	

Specify wind stress to drive a gyre
 No topography, no shelf current:
 Specified T^{xbody} as return momentum flux
 Following Pichevin and Nof [1997,Tellus]
 (steady state, inviscid, x-momentum eq.)

$$\int hu^{2} dy = 0$$
Elorida
$$\frac{\partial}{\partial t}(...) = \int hu^{2} dy$$
Florida
$$\frac{\partial}{\partial t}(...) = \int hu^{2} dy - \iint_{S_{EG}} \tau^{xbody} dS_{EG}$$

Run for 15 years, g'=0.01m/s², H=600m

Mass balance

NOWIND

$Q-Q_v=q+Q_f$	Transports (Sv)	No Wind	Wind
$Q_{eddy} = Q - q = Q_{y} + Q_{f}$	Yucatan Inflow Q	30.6	33.2
	Yucatan Outflow Q _v	6.9	9.2
	Westward Eddy Q _{eddy}	13.1	13.2
	Florida Outflow $q = Q - Q_{eddy}$	17.5	20.0
	Florida Eddy Outflow $Q_f = Q_{eddy} - Q_y$	6.2	4.0

Discussion

$$OHC = \rho_r c_p \int_{z_{18}}^{\eta} (T - 18) dz$$

Conclusions

- Wind produces westward transport over the shelves, and a returned flow in central basin towards the Loop Current.
- The returned flow constitutes a zonal momentum flux, delaying eddy shedding; this finding is confirmed by reduced gravity experiments, and it is *general*.
- Returned flow forces larger and stronger Loop & rings
- Winds increase the Yucatan-Caribbean Sea exchange

Thank you!

