The origin of along-shelf pressure gradient (ASPG) in the Middle Atlantic Bight (MAB)

Fanghua Xu and Lie-Yauw (Leo) Oey Princeton University IWMO-2010, ODU, May 24

Why is the ASPG important?

ASPG 10⁻⁸~10⁻⁷ drives mean along-shelf flow towards the southwest (Stommel and Leetmaa, 1972; Csanady, 1976; Lentz, 2008);

Tide-gauge sea level data: demeaned

Previous Works:

- Due to offshore pressure field (Beardsley and Winant,1979)?
 But, pressure field not likely to penetrate onto the shelf (Wang, 1982; Chapman et al. 1986);
- Due to be rivers?

This was questioned by Csanady (1979);

• Upstream transport? (Wang, 1982; Chapman et al. 1986).

The **origin** of (mean) ASPG remains unclear (Lentz, 2008)... What is its origin?

What drive the seasonal and inter-annual variations? how and why?

Possible candidates:

Winds GS path

Rings

Rivers Labrador transport

River and transport

R/Lag in month	ASPG	Wind curl	GS shifts
GS shifts	0.57 / 4	0.40 / -6	
Wind curl			
N - EKE	0.41 / 5	0.33 / -4	0.30 / 0
Transport		-0.65 / 0	
River input	0.19/0		
N - EKE	0.52	0.33	0.27

Correlation coefficient (R) and lags

The EKE estimated from satellite geostrophic currents (Aviso)

Black line: 16-year mean of GS path

An Idealized simulation with warmcore rings injected every 360 days

SSH

ASPG=-1.5e-08

Summary

Thank you! Questions?

Along-shelf momentum balance

Inter-annual Correlation coefficient

R/lags	ASPG	GS latitude shifts	Wind stress curl	Transport	River Input	Model EKE
ASPG		0.15/0.25	-0.07/0.12	-0.06/0.1	0.09/0.18	0.52/0.19
GS latitude shifts	0.15/0.25		-0.11/0.18	0.40/0.16		0.27/0.16
Wind stress curl	-0.07/0.12	-0.11/0.18		-0.48/0.14		0.33/0.15
Transport	-0.06/0.1	0.40/0.16	-0.48/0.14			
River input	0.09/0.18					
Model EKE	0.52/0.19	0.27/0.16	0.33/0.15			

POM

Princeton Regional Ocean Forecast System (PROFS)

- Curvilinear grid
- Grid size: Horizontal: ~10km Vertical: 25 σ levels

Mid-Atlantic Model:

- Winds, rivers & tides
- Nesting from PROFS
- Finer grid size: ~5km
- DA for GS & Eddies

Seasonal mean CCMP winds

Summary

- 1. The NWAOM produced the mean along-shelf circulation southwestward. The model dynamics produce an ASPG, 8.4×10^{-8} , consistent with the value inferred by previous studies.
- 2. The total freshwater discharge and upstream transport mainly contribute to the mean ASPG setup.
- 3. The wind stress may not affect the ASPG directly, but the upstream transport and GS path shifts are deeply influenced by wind. So the wind is important to the ASPG.
- 4. The westward propagating Rossby waves and warm-core rings can influence ASPG in both seasonal and inter-annual time scale.

1. The variability of Gulf Steam path

-0.5 93 94 95

~

96 97

98 99

00

01

02 03

04

05 06

07 08

2. Wind stress curl: $(\partial \tau_y / \partial x - \partial \tau_x / \partial y) / \rho$

3. The Gulf Stream warm-core rings

4. Upstream Transport: $\int UHdy$

5. Rivers

Hypothesis

 The ASPG is affected by westward Rossby waves and Gulf Stream (GS) warm-core rings (WCR).

WCR->SSH near shelf break->ASPG

R	AS currents	ASPG
AS currents		-0.52
ASPG	-0.52	
GS shifts	0.47	-0.31
Wind curl	-0.59	0.22
Model EKE	-0.05	-0.08
Transport	0.51	-0.10
River input	-0.44	0.19
Model EKE	-0.54	0.52

River only

River with reduced transport 34%

Reduced transport 17%

time

Rivers: 1992-2008

R for monthly data

R/lags	Alongshore currents	ASPG	GS latitude shifts	Wind stress curl	Transport	River Input	Model EKE
Alongshore currents							
ASPG	-0.44/0.20						
GS latitude shifts	0.32/0.12	-0.21/0.17					
Wind stress curl	-0.34/0.09	0.18/0.12	-0.24/0.07				
Transport	0.43/0.18	-0.09/0.27	0.41/0.15	-0.35/0.11			
River input	-0.41/0.10	0.16/0.13	-0.34/0.09	0.23/0.06	-0.46/0.12		
Model EKE	0.01/0.04	-0.10/0.04	0.21/0.05	0.04/0.03	0.003/0.05	-0.05/0.06	