LES of turbulent shear flow and pressure driven flow on shallow continental shelves.

Guillaume Martinat,CCPO - Old Dominion University Chester Grosch, CCPO - Old Dominion University Ying Xu, Michigan State University Andres Tejada Martinez, University South Florida What is the effect of a wind stress, a pressure gradient and wave forcing or a combination of the three on the dynamic of a turbulent flow ?

- Simple geometry : make abstraction of interaction between the flow and the geometry.
- Use of LES allows an accurate description of the flow.

Outline

- Description of the model
- Numerical method
- Base flows :
 - Pure wind driven flow
 - Pure tidal flow
 - Wind driven flow with wave forcing
- Combinated flows :
 - Colinear wind and tide driven flow
 - Colinear wind and tide driven flow with wave forcing
 - Normal wind and tide driven flow
 - Normal wind and tide driven flow with wave forcing
- Conclusion
- Prospects

Description of the model (1)

The filtered Navier-Stokes equations

• Continuity:
$$\frac{\partial \overline{u}_i}{\partial x_i} = 0$$

• Momentum: $\frac{\partial \overline{u}_i}{\partial t} + \overline{u}_j \frac{\partial \overline{u}_i}{\partial x_j} = -\frac{1}{\rho} \frac{\partial \overline{\prod}}{\partial x_i} + \frac{1}{\text{Re}} \frac{\partial^2 \overline{u}_i}{\partial x_i^2} + \frac{\partial \tau_{ij}^{(r)d}}{\partial x_j} + \frac{1}{La_T^2} \varepsilon_{ijk} u_j^s \overline{\omega}_k$
 $\overline{\prod} = \overline{\pi} - \frac{1}{3} \rho \tau_{kk}^{(r)}$ Re $= \frac{U_\tau H}{2\nu}$ $La_T = \sqrt{\frac{U_\tau}{U_s}}$
 $u_1^s = \frac{\cosh[2k(x_3 - H)]}{2\sinh^2(kH)}$ $u_2^s = u_3^s = 0$

Description of the model (2)

SGS stress:
$$\tau_{ij}^{(r)} = \overline{u}_i \overline{u}_j - \overline{u}_i \overline{u}_j$$

Smagorinsky model for the SGS stress:

$$\tau_{ij}^{(r)d} = \tau_{ij}^{(r)} - \frac{1}{3}\tau_{kk}^{(r)}\delta_{ij} = 2v_T\overline{S}_{ij} \qquad \overline{S}_{ij} = \frac{1}{2} \left(\frac{\partial \overline{u}_i}{\partial x_j} + \frac{\partial \overline{u}_j}{\partial x_i} \right)$$

Eddy viscosity: $v_T = (C_S\overline{\Delta})^2 |\overline{S}| \qquad |\overline{S}| = \sqrt{2\overline{S}_{ij}\overline{S}_{ij}}$

 $(C_s \overline{\Delta})^2$ is computed dynamically using the Germano identity (Germano et al., Phys. Fluids, 1991)

Numerical method

- Time integration is by 2nd order time-accurate fractional step scheme
 - Momentum eqns. are solved first followed by a pressure Poisson eqn.
 - The Poisson's equation for pressure enforces continuity
- Spatial discretization uses hybrid spectral/finite-difference approach
 - Horizontal directions are discretized spectrally
 - Vertical direction is discretized via 5th and 6th order compact finite-differences
- Code is parallelized using Message Passing Interface (MPI)
 - Enables use of multiple processors making computations faster
 - Typical runs last for about 2-3 month using 24 processors for 1000 seconds of physical time

Base Flows

- •Wind driven flow
- •Tidal flow
- •Wind driven flow with wave forcing

- Pressure gradient or surface stress are applied such that $\operatorname{Re}_{\tau} \equiv u_{\tau}h/v = 395$
- •Grid is chosen with 96x96x96 nodes
- La_t in case of wave forcing is chosen such that : $La_t = \sqrt{\frac{u_{\tau}}{u_s}} = 0.7$
- Mesh refinement ensures proper resolution of the boundary layer

Average velocity profiles

Wind driven flow with Langmuir circulation

$$u^{+} = \frac{\overline{u} \cdot h}{v \cdot \operatorname{Re}_{\tau}}$$

$$x_3^+ = \frac{x_3}{h} \cdot \operatorname{Re}_{\tau}$$

Visualization

Wind driven flow with Langmuir circulation

Normal and shear stresses

Wind driven flow with Langmuir circulation

Turbulent kinetic energy budgets

Wind driven flow with Langmuir circulation

Lumley Triangle

The Reynolds-stress anisotropy tensor has six independent components b_{ij}

$$b_{ij} = \frac{\left\langle \overline{u}_i \overline{u}_j \right\rangle}{\left\langle \overline{u}_i \overline{u}_i \right\rangle} - \frac{1}{3} \delta_{ij}$$

The principal invariants of **b** (Lumley, 1978) are :

$$I = b_{ii} \equiv 0,$$
 $II = \frac{1}{2}b_{ij}b_{ji},$ $III = \frac{1}{6}b_{ij}b_{ji}b_{ki}$

The characteristic equation of the matrix $[b_{ij}]$ is :

$$\lambda^3 - I\lambda^2 + II\lambda - III = 0$$

Because $I = b_{ii} = \text{trace}([b_{ij}]) = 0$, $\lambda_1 + \lambda_2 + \lambda_3 = 0$ and only two of the eigenvalues are independent. Pope (2000) defines another pair of invariant :

$$\eta^2 = \frac{1}{6} b_{ij} b_{ji}, \qquad \xi^3 = \frac{1}{6} b_{ij} b_{ji} b_{ki}$$

Lumley triangle

Wind driven flow with Langmuir circulation

Complex flows

- Wind and Tide flows colinear
- Wind and Tide flows normal
- Wind and Tide flows colinear with wave forcing
- Wind and Tide flows normal with wave forcing

- Pressure gradient and surface stress are applied such that $\operatorname{Re}_{\tau} \equiv u_{\tau}h/v = 395$
- Grid is chosen with 96x96x96 nodes
- La_t in case of wave forcing is chosen such that : $La_t = \sqrt{\frac{u_{\tau}}{u_s}} = 0.7$
- Mesh refinement ensures proper resolution of the boundary layer

Average velocity profiles

Normal and shear stresses

Turbulent kinetic energy budgets

Lumley triangle

Conclusion

- Wave forcing creates highly coherent streamwise turbulent cells
- Those coherent structures induce an increase of normal stresses near the bottom and the surface.
- Langmuir circulation works as a mixing mechanism acting to homogeneize the water column.
- In case of Langmuir circulation, logarithmic law near wall is not observed.
- Balance of turbulence kinetic energy budget is substantially different with Langmuir circulation. For example :
 - The langmuir production term becomes one of the major terms of the balance
 - The pressure-strain rate which is usually negligible also becomes important This has major implication for RANS type modelling
- Crossed Tidal and Wind driven flow make u_1u_2 Reynolds-stress non negligible
- Lumley triangle is a sensitive indicator of the structure of turbulence. It shows a more three dimensional structure of the flow in case of Langmuir ciculation

Extensions

- We are studying the impact of a strong stratification on wind and pressure driven flows.
- We are studying an extension to a secondary finer grid to transport a passive scalar in order to simulate gas transfer.

Thank You

Questions ?

$$\mathbf{F} = \bar{\mathbf{U}}^{\mathbf{s}} \times \bar{\omega}$$

Here $\overline{\mathbf{U}}^{s}$ is the Stokes steady drift velocity caused by the gravity waves and $\overline{\omega}$ is the vorticity of the shear flow.

For a surface gravity wave with amplitude a, frequency σ , wavenumber kand surface elevation, ζ , given by

$$\zeta = a\cos\left(kx_1 - \sigma t\right)$$

with the dispersion relation

$$\sigma^2 = gk \tanh{(kH)}$$

the (dimensional) Stokes drift velocity is

$$\bar{\mathbf{U}}^{\mathbf{s}} = u_S \quad \frac{\cosh 2k \left(z+H\right)}{2 \sinh^2 \left(kH\right)} \quad \mathbf{e}_1 ; \qquad u_S = \sigma k a^2$$

$$\begin{split} P_{ij} &= -\langle \bar{u}_i' \bar{u}_k' \rangle \frac{\partial \langle \bar{u}_j \rangle}{\partial x_k} - \bar{u}_j' \bar{u}_k' \quad \frac{\partial \langle \bar{u}_i \rangle}{\partial x_k} \qquad (\text{shear prod. rate}), \\ Q_{ij} &= \frac{1}{La_T^2} \langle \epsilon_{jlk} u_l^s \bar{\omega}_k' \bar{u}_i' \rangle + \epsilon_{ilk} u_l^s \bar{\omega}_k' \bar{u}_j' \qquad (\text{Langmuir forcing prod. rate}), \\ T_{ij} &= -\frac{\partial}{\partial x_k} \quad \bar{u}_i' \bar{u}_j' \bar{u}_k' \qquad (\text{turbulent transport rate}), \\ T_{ij}^{\text{sgs}} &= \frac{\partial}{\partial x_k} \quad u_i' \tau_{jk}' + u_j' \tau_{ik}' \qquad (\text{SGS transport rate}), \\ D_{ij} &= \frac{1}{\text{Re}} \frac{\partial^2}{\partial x_k^2} \quad \bar{u}_i' \bar{u}_j' \qquad (\text{viscous diffusion rate}), \\ \Pi_{ij} &= -\frac{\partial}{\partial x_k} \quad \delta_{jk} \quad P' \bar{u}_i' + \delta_{ik} \quad P' \bar{u}_j' \qquad (\text{pressure transport rate}), \\ \phi_{ij} &= 2 \quad \bar{P}' \bar{S}_{ij}' \qquad (\text{pressure-strain redist. rate}), \\ \epsilon_{ij} &= -\frac{2}{\text{Re}} \quad \frac{\partial \bar{u}_i' \partial \bar{u}_j'}{\partial x_k \partial x_k} \qquad (\text{viscous dissipation rate}) \text{ and} \\ \epsilon_{ij}^{\text{sgs}} &= -\tau_{ik}' \frac{\partial \bar{u}_j'}{\partial x_k} - \tau_{jk}' \frac{\partial \bar{u}_i'}{\partial x_k} \frac{\partial \bar{u}_i'}{\partial x_k} \qquad (\text{SGS dissipation rate}). \end{split}$$

Correlation Functions

Wind driven flow with Langmuir circulation

Correlation Functions

