Operational and Verification ---A coupled forecasting system for the seas off China

Guansuo Wang, Fangli Qiao, Xunqiang Yin, Changshui Xia and Yongzeng Yang

Key Laboratory of Marine Science & Numerical Modeling (MASNUM) The First Institute of Oceanography (FIO), State Oceanic Administration (SOA), China

Outline

- Introduction of the coupled forecast system for the seas off China
- 2. Applications of this forecast system
- 3. Verification
- 4. Conclusion

Introduction

The circulation part is the improved POM adding the wave-induced mixing coefficient

- The wave part is MASNUM -WAV model
- The tidal current is included
- The Model is parallelized using MPI method
- The meteorological model is MM5 for regional and NCEP products for the global

Data assimilations

SST is assimilated in mixing layer using Nudging method:

$$\frac{\partial TD}{\partial t} + \frac{\partial TUD}{\partial x} + \frac{\partial TVD}{\partial y} + \frac{\partial T\omega}{\partial \sigma} = \frac{\partial}{\partial \sigma} \left[\frac{K_H}{D} \frac{\partial T}{\partial \sigma} \right] + F_T - \frac{\partial R}{\partial z} + \frac{T_{obs} - T}{\tau}$$

Where T is forecast SST, Tobs is observed SST, τ is relaxation time scale. The advantage of Nudging is less simple ,affective and low time costing The observed SST is obtained from the NEAR-GOOS real time regional ocean data base under Japanese meteorological society web site: http://goos.kishou.go.jp

Operational forecast system

Focused section

Validation for this coupled forecast system

Verification is an indispensable part of ocean research and operational forecasting activities.

Verification the differences between observation data and the forecast products (sea surface temperature, subsurface temperature and mixed layer depth, wind) of 24 hour,48hour and 72 hour

The statistical metrics

Mean error (ME) =
$$\frac{1}{N} \sum_{i=1}^{N} (O_i - F_i)$$

Mean absolute error (MAE) =

$$\frac{N}{N} \frac{1}{1} \frac{1}{N} \sum_{i=1}^{N} |O_i - F_i|$$

Root mean absolute error (RMSE) =
$$\sqrt{\frac{1}{N}\sum_{i=1}^{N}(O_i - F_i)^2}$$

Correlation coefficient (R) = $\frac{\sum_{i=1}^{N}(F_i - \overline{F})(O_i - \overline{O})}{\sqrt{\sum_{i=1}^{N}(F_i - \overline{F})^2}\sqrt{\sum_{i=1}^{N}(O_i - \overline{O})^2}}$

Verification of SST with satellite data

b. Variation of MAE with time, All statistic results are obtained with respect to daily-averaged satellite data and model data

Distribution of MAE and ME along LON/LAT

Ocean Depth(m)

Distribution of MAE and ME along 30N/123E

There have be the same phenomena along 30N and 123E

Probability of distribution of MAE for SST

Comparison with Argo data

Profile number: 8036

The distribution of Argo Profile used in verification between Apr 20. 2008 to Apr 30. 2010

Subsurface temperature

Average Variations of ME, MAE, R and RMSE with depth from surface to 500m below the sea surface last 2 years.

In the layer between 100m to 150m: maximum MAE(>2°C)

minimum correlation coefficient maximum RMSE

Mixed Layer Depth

The depth, where the temperature has changed by a variable value $(0.5^{\circ}C)$ from the temperature at a reference depth of 10 m.

Time	ME	R	MAE	RMSE
1 Day	11.8	0.54	21.6	32.3
2 Day	12.1	0.54	21.6	32.4
3 Day	12.3	0.52	21.7	33.1

Mixed layer depth was underestimated. ME value is about 12m for forecast vs Argo. Table data show that the forecast skill was reduced with time

Mixed Layer Depth

Distribution of ME for MLD

Time	<15M	15 - 40 M	>40M
1 Day	50.3%	34.4%	15.3%
2 Day	50.4%	34.2%	15.4%
3 Day	50.4%	34.1%	15.5%

Probability of forecast accuracy for MLD

Forecast Accuracy =	acc. time	>70%	50%-70%	<50%
1-ABS(ObsFcast)/Obs	1 Day	43.3%	27.6%	29.1%
	2 Day	43.1%	27.7%	29.2%
	3 Day	43.2%	27.5%	29.3%

Conclusion

- Skill in predicting SST,MLD is expected to be improved. However this will tend to increase the shallow bias in MLD
- 2. Forecast skill go down with forecast time
- 3. Open boundary and ocean terrain have a important impact on forecast skill
- 4. In a period of time (Jan-Feb-Mar), Forecast skill is lost. There maybe a forecast barrier.

Overall the forecast shows reasonable accuracy over a series of studies designed to test ability to represent upper ocean condition.

