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4.1 Introduction 

Numerical ocean models increasingly make use of σ - coordinate systems. A
paper by Gerdes (1993) shows that these coordinate systems can be more general;
he termed the generalized form an "s - coordinate" system. The main advantage of
the σ or s - system is that, when cast in a finite difference form, a smooth represen-
tation of the bottom topography is obtained; one can also easily incorporate a bot-
tom boundary layer as well as a surface boundary layer in those coordinate
systems. This is intuitively appealing and Gerdes has shown that superior numeri-
cal results are obtained relative to a z - level system. However, in regions of steep
topography and crude resolution - a limiting case would be a seamount represented
by a single grid point surrounded by a flat bottom - the so-called sigma coordinate
pressure gradient error exists (Haney 1991, Mellor et al. 1994, 1998) and at least
locally a z - level coordinate system might be preferred. On the other hand, in a
recent study, Bell (1997) has shown that the step structure of z - level models lead
to vorticity errors and consequent errors in the barotropic component of the flow
which, he reports, cause rather large temperature errors (3 to 4° C) on a 1° x 1° grid
of an Atlantic Ocean model after 3 months of integration. And it is difficult to
model bottom boundary layers in a z - level model (Winton et al. 1998). 

The pioneer Bryan-Cox model (Bryan 1969, Cox 1984) is a z - level model. A
modification by Spall and Robinson (1993) is termed a "hybrid" coordinate system;
they describe it as a z - level system in the region, 0 > z > - zc = constant, and a σ
system when zc > z > - H(x, y) where the transformed sigma equations apply. Pre-
sumably, this system is adopted so that surface mixed layers, which do not scale on
depth, may be best represented. However, the hybrid system would appear to
require separate numerical implementations for the two regions; their objectives
can be realized more simply with the s - coordinate system described here. 

For the sigma coordinate system of the Princeton Ocean Model (henceforth
POM), the top numerical level, k = 1, follows the free sea surface and the lowest
numerical level, k = kb, follows the bottom depth; for 1 < k < kb, the distance
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between levels are in fixed proportion to each other independent of elevation or
depth. In this paper we revise POM so that it is basically an s - coordinate system
(although the variable, s, is, for very good reason, different from that used by Ger-
des) and the proportionality constraint is removed. However, unlike the Gerdes for-
mulation, the derivation and implementation permit a free surface and the distance
between levels can change in time. Also the structure of the numerical algorithm is
designed to support a wide variety of vertical coordinate systems including a z -
level system. The present model generalization permits a z - level representation
everywhere in the model domain or locally in selected regions of the domain. 

Song and Haidvogel (1994) have adopted many of the characteristics of POM
but have also generalized to an s - coordinate system. Our formulation and imple-
mentation strategy, as described below, differs from theirs and we include the z -
level option. Intercomparisons between different models have been the focus of
recent projects (DYNAMO 1997, Willems et al. 1994). 

The intercomparisons of this paper isolate the effect of different vertical grids;
otherwise model physics and numerics are identical. 

4.2 The Governing Equations

 We first restrict attention to the analytic description of the basic equations
although it is our intention that they be cast in finite difference form and we condi-
tion the description with that in mind. The basic equations described in an (x,y,z)
Cartesian coordinate system for the velocity components, U, V and W, and for
potential temperature and salinity, T and S, are 
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(17)

(18)

(19)

 In the above, x and y are horizontal coordinates (to be cast in a curvilinear,
orthogonal coordinate system in section 4.4.) and z is the vertical coordinate; g is
the gravity constant and f is the Coriolis parameter. The density is ρ whereas

is the vertical density gradient corrected for adiabatic lapse rate.  on
the right hand side of (4) is the divergence of radiation flux, R. The vertical mixing
coefficients are KM , KH , and Kq and are functions of a Richardson number depen-

dent on density stratification (Mellor and Yamada, 1982, Galperin et al, 1988 and

Mellor, 1996).  in (7) is a "wall proximity function". Horizontal diffusion fluxes

are represented by Fα ( α= x, y,T,S,q,l) .

4.3 Transformation to the s-coordinate system 

The Cartesian coordinate system, (x, y, z, t), is transformed to the s - coordinate
system, (x*, y*, k, t*), according to 
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 where k is a continuous variable in the range,  , but when the differen-
tial equations are discretized, k will also be discrete and will be the label of the
numerical level. This usage is quite convenient and obviates the need for an inter-
mediate variable [which Gerdes called s, and is not the usage in (9d)]. We define η
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to be the surface elevation so that we will require s = 0 at k = 1. The key attribute
of the transformation is (9a,b); i.e., the horizontal coordinates in the Cartesian
coordinate system are equated to the horizontal coordinates in the sigma system.
Otherwise, the transformation is fairly general and includes, for example, a z - level
system, s = σ(k)(Hmax  + η(x,y,t)) , and the sigma system, s = σ(k)(H(x,y) +

η(x,y,t)); H(x,y) is the bathymetry and Hmax  is its maximum value. In both cases,

σ(1) = 0 and σ(kb) = -1. In the case of the z - level system (really a quasi z  - level
system because s is a function of time, but it is a weak function of time since, gen-
erally, η/H <<1), levels near the bottom are masked to approximate the bathymetry
and, thus, kb is a function of the horizontal coordinates. The distinguishing feature
of both of these limiting cases is that k is functionally separated from x, y and t. In
general they need not be separable as we shall demonstrate. 

There are two ways of deriving the s - coordinate equations. The first way is to
apply integral (control volume) equations to a volume element bounded by x* ,y* ,
k and x* + ∆x*, y* + ∆y*, k + ∆k. The second way is to formally transform equa-

tions (1)-(5). Thus, if φ is any dependent variable such that φ(x, y, z, t) = φ* (x*, y*,
k,t*) then 

(10a,b)

(10c,d)

From the fact that  , we obtain  where

 and . Similarly,  ,

 and . (In discretized form, 

is simply the distance, δs, between levels since δk = 1. ) Therefore, 
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 We define a new variable, ω , such that 
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Note that the surface kinematic condition,  , is satisfied

if we require that ω = 0 where s = 0. Similarly, at the bottom,  ,

and we set ω = 0 where  . 
If we use (11a, b, c, d) and (12) in equations (1) through (9) and drop all of the

asterisks from independent and dependent variables, we obtain,
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In the above, , ,

, ,  and

, . Horizontal diffusion for q2 and q2l is
the same form as that for T and S. We now note that the gradients on the right sides
of the momentum and scalar fluxes are reckoned along k surfaces. However, any
(simple) alternative, say, to transform so that gradients are taken along horizontal
or isopycnal surfaces, leads to problems in properly modeling the bottom boundary
layer (Mellor and Blumberg 1985) and possibly the surface layer. In the case of
isopycnal surfaces large vertical flux terms normal to top or bottom surfaces can be
created and can compete with the vertical mixing parameterization denoted by KM
and KH; these recognize that turbulent motion normal to surfaces are small whereas
AM and AH are not. On the other hand, mixing along k surfaces creates problems in,

say, the interior ocean in the presence of vertical temperature or salinity gradients;
this will be discussed below. 

Values for the horizontal viscosity, AM, and diffusivity, AH, will play an impor-
tant role in the solutions to be discussed below. 

4.4 Finite Difference Equations 

The differential equations are first written in finite volume form, that is, the
equations are integrated over a finite cell volume. In particular for the advective
operator, 

where δV  is an elemental volume, δA an elemental area and n a unit vector nor-
mal to the area. Then
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(24)

(25)

where now we define

(26)

This formulation accommodates an orthogonal, curvilinear, horizontal coordi-
nate system; the elements of each cell have the horizontal dimensions, δx, δy and

the area, . The vertical dimension is δs. Formally, there are additional
horizontal viscous terms in (22) and (23) due to curvature, but these have been
neglected since the terms themselves are highly empirical and we prefer the values,
AM and AH, be as small as possible. In the calculations discussed below, the hori-
zontal coordinates will be spherical, a special case of more general orthogonal cur-
vilinear coordinates accommodated by the model. 

4.5 Model Strategy 

The algorithmic structure of the generalized model does not differ greatly from
the previous POM (Blumberg and Mellor 1987, Mellor 1996) in that it has a free
surface, split internal, external time steps and second order horizontal differencing
on a staggered C grid (although work on other differencing schemes is in progress)
and an imbedded turbulence closure scheme which primarily governs surface and
bottom boundary layers. The new features are that the more general vertical incre-
ment, δs(i,j,k,n), where i,j,k are the spatial indices and n is the time index, has

replaced the sigma increment, δs(k)(H(i,j) + η(i,j,n)) and the previous two-dimen-
sional land mask is now three-dimensional to accommodate the z - level grid when
that system is invoked. All of the code except for one subroutine is universal. The
exceptional subroutine is crafted to produce whichever coordinate system is
desired. In the examples discussed below, there are three such subroutines (SUB-
ROUTINE MAKSIG, for example), one for each of the three grids we have chosen
to test in this paper. The active subroutine is called at each internal mode time step.
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4.6 Numerical Simulations Comparing Three Vertical Coordinate Systems 

We will examine calculations using three vertical grids, a z - level grid, a σ grid

and a generalized σ grid. Fig. 4.1  illustrates the domain used in the calculations
which includes a bowl shaped deep basin in the north, east and west and a vertical
wall at the equator; the basin connects to a shallow continental shelf in the north.
Fig. 4.1 a represents both the sigma and generalized sigma grids. The horizontal
resolution of all the experiments is about 1°x1° on a 51 x 76 horizontal grid. There
are 21 vertical grid levels with spacing decreasing near the surface; of course, for
the z - level grid, levels are truncated for all but the deepest depths (Fig. 4.1 b). All
vertical walls including those of the z - level steps are adiabatic and frictionless. 

The initial temperature is T(x,y,z) = T(z) = 5 +15exp(z / 1000m) and the applied

zonal wind stress field is (τxo , τyo ) =(-.0002 m2s-2 sin{2π(φ/60)} ,0) where f is
latitude. The surface heat and salinity flux and penetrative radiation are nil. 

Fig. 4.2  shows the three vertical grids in a north-south cross section at the center
of the domain shown in Fig. 4.1 . For the z-level grid (Fig. 4.2 a), we have a con-
ventional grid with the characteristic step structure at the bottom. For the conven-
tional sigma grid (Fig. 4.2 b), the spacing between the different layers have the
same proportion independent of depth, and the lowest layer smoothly follows the
bottom topography. For the generalized sigma grid (Fig. 4.2 c), we have devised a
grid which is mostly a z - level grid, but departs from the z - level constraint near
the bottom boundary such that the lowest layer follows the bottom topography.
Layers therefore converge near the bottom and allow for good resolution of the bot-
tom boundary layer in most of the domain. The minimum layer thickness is con-
strained to be 5 cm at the bottom. 

In the first set of experiments the three models were integrated for one year using
viscosity and diffusivity values of AM = 104 m2 s-1 and A H = 0.2 AM , respec-

tively. This level of horizontal viscosity is that used in the GFDL, Bryan-Cox
applications for this resolution (Cox 1975, Bryan and Lewis 1979, Rosati and Mya-
koda 1988, Derber and Rosati 1989, Bell 1997) and a reduced diffusivity is also
typical; we have found that calculations with AH = AM do not differ significantly
from those discussed below. However, the reduced diffusivity is generally favor-
able to the sigma systems to reduce a vertical component of the along - sigma dif-
fusion. Another way to counter along-sigma diffusion is to subtract the (initial in
the present case) climatological temperature fields before reckoning along sigma
gradients of temperature and salinity and fluxes, and this has been invoked in all
three model runs (but is inconsequential for the z - level run). The ultimate solution
is to set the along-sigma diffusivity equal to zero which we find possible in many
applications of the sigma grid (Mellor et al. 1998, Ezer and Mellor 1999). 

Surface elevations, representing the surface velocities, are shown in the left pan-
els and transport streamfunctions, representing the depth integrated velocities, are
shown in the right panels in Fig. 4.3  for all three grids. The two sigma models are
almost identical. The z - level calculations are also quite similar to the two sigma
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models. However, the z - level surface velocities in the shallow northern region are
much stronger. In Fig. 4.4 , the temperature cross sections of the three experiments
appear to be virtually identical in most of the domain, producing similar upper
ocean mixed layers, except near the continental shelf, where only the two sigma

Fig. 4.1. Bottom topography of the model domain, a bowl shaped deep basin with a
shallow shelf in the northern part, as represented by different vertical grids: (a) The
conventional and the generalized sigma coordinate grids use a continuous bottom depth; the
contour interval used in the plot is 100 m. (b) The z-level grid has a step-like topography so
that the lines show the location of vertical walls and the numbers show the depth of the
bottom of the steps. 

B

A
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models appear to produce also bottom boundary layers. In Fig. 4.5 , and velocity
cross sections of the three experiments are fairly similar in the deep ocean, but sig-
nificantly differ from each other near the continental slope and shelf where the z -
level grid produces noisy velocity fields. 

If the horizontal viscosity and diffusivity are reduced by an order of magnitude,
AM = 103 m 

2s-1 and AH = 0.2 AM , the situation changes. The sigma models tolerate

Fig. 4.2. Vertical grids in a nort-south cross section at the center of the domain: (a) the z -
level grid, (b) the conventional sigma coordinate grid and (c) the generalized sigma grid.
The grid in (c) is dominated by z coordinates in the deep ocean, but follows the topography
like sigma coordinates near the sloping bottom with layers converging to create a well
resolved bottom boundary layer.

A

B

C
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the reduced values; the z - level model does not as seen in Figs. 4.6 , 4.7  and 4.8 .
At this reduced viscosity and diffusivity, the sigma models exhibit Rossby waves

Fig. 4.3. The surface elevation (left panels) and the total stream function (right panels) after
360 days of calculation using a constant viscosity of AM =10 

4 m 2 s -1 ; results are shown for
the z- level grid (top panels a and b), the s grid (middle panels c and d) and the generalized s
grid (bottom panels e and f). Contour intervals are 5 cm in (a), (c) and (e) and 5 Sv (1
Sv=106 m 3 s-1 ) in (b), (d) and (f). 
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near the equator (Figs. 4.6 d and 4.6 f) that are absent from the high viscosity calcu-
lations (Fig. 4.3 ); additional plots (not shown) reveal that the waves propagate
westward at a speed of about 20 km d-1 , about 30% higher than the speed of the
simplest barotropic Rossby wave theory. Experiments (not shown) with even
smaller viscosity of AM = 102 m2 s-1 , still show similar results for the sigma grid
calculations, but with somewhat more intense Rossby waves. 

Other calculations have been performed. They include a lower resolution, 2° x 2°
, on a 26 x 38 x 11 grid and the same topography, initial conditions and surface

Fig. 4.4. North¦south temperature cross sections at the center of the domain after 360 days
for (a) the z - grid , (b) the s grid and (c) the generalized s grid;  AM =10 

4m 2 s -1.
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forcing as before. The viscosity was raised to AM = 5 x 105 m2s-1 and AH = 0.2 AM.
The results were quite similar to the higher resolution, high viscosity results. How-
ever, the z - level grid produced numerically divergent results which was repaired
by increasing the number of vertical grid points from 11 to 21. 

Fig. 4.5. North-south zonal velocity cross sections at the center of the domain after 360
days for (a) the z - grid , (b) the s grid and (c) the generalized s grid;  AM =104 m 2 s -1 .
Contour interval is 0.5 cm s - 1 ; dashed contours represent negative values and westward
flows.
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This is the place to also mention that POM usually operates with a non-linear,
Smagorinsky viscosity and diffusivity which has the advantage that its empirical
constant is non-dimensional and nearly resolution independent and yields low val-
ues in regions where velocities are low. As noted by Derber and Rosati (1989), the
GFDL model cannot tolerate the Smagorinsky formulation and we have also found
this to be the case in the present z - level model. 

Fig. 4.6. Same as Fig. 4.3 , but for the low viscosity case with  AM =103m 2 s -1 .
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4.7 Errors 

The source of sigma coordinate pressure gradient error is easily identified
(Haney, 1991) although the error itself has not been fully understood until recently
(Mellor et al. 1994, 1998). It is known that the error can be greatly reduced by sub-
tracting the area averaged density before evaluating density gradients and perform-
ing the baroclinic integrals in (14) and (15) or (22) and (23). By running the

Fig. 4.7. Same as Fig. 4.4 , but for the low viscosity case with  AM =103 m 2 s -1 .
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straight σ model with no wind forcing and with no subtraction of the area averaged
density, the maximum velocity and rms errors were approximately 2.5 cm s-1 and
0.15 cm s-1 in the high viscosity case and 5.0 cm s-1 and 0.30 cm s-1 in the low vis-
cosity case; the maximum errors were located in the shallowest regions along the
eastern and western boundaries. The maximum velocity errors in the generalized
sigma model were about the same although the prior expectation was that they
would be smaller. In both cases, the maximum vertically averaged velocities were

Fig. 4.8. Same as Fig. 4.5 , but for the low viscosity case with   AM =103 m 2 s -1. 
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similar to the rms velocity errors. The corresponding errors in the z - level case
were, of course, nil. 

After subtraction of the area averaged density, the errors in the sigma models
were also nil. Of course, after the model has run with wind forcing and baroclinic
density structure has formed, there must exist some quite small but hard-to-evalu-
ate sigma errors. 

However, it is apparent from our results that, with wind forcing, errors in the z -
level model, may be much larger than in the σ grid, in particular, in shallow
regions and if viscosity is not high enough. Applying a computational stability
analysis to one - dimensional, advection-diffusion equation, 

(Bryan et al. 1975) derived the stability condition R < 2, where R = u∆x/A is the
grid cell Reynolds number. Apparently, the step structure of the z - level grid
excites this mode (R varies spatially but is of the order 2 for the high viscosity runs,
but is much larger for the low viscosity runs) whereas the σ grids do not. Bell
(1997) has produced a more complex analysis which identifies vorticity errors due
to step structure. 

4.8 Other Grids 

We have looked at and compared only two conventional grids and a third some-
what unconventional, generalized sigma, or s - coordinate grid. (It should be men-
tioned however, that in the particular application tested here, the superiority of the s
- coordinate system over the standard σ - coordinate system has not been demon-
strated). However, the possible grid structures are infinite. For example, there is no
reason not to have a sigma-like grid in one portion of a model domain and a z -
level in another portion where, for example, the topography in a low resolution
model might be especially steep. Given the model structure described in section
4.5, it would be possible to create an isopycnal model by creating a single enabling
subroutine. The attendant problems of surface and bottom layer representation
seem daunting to us, however. Other possibilities are an adaptive vertical coordi-
nate system to resolve the surface mixed layer or an underlying sharp spring and
summertime thermocline such as observed in the Great Lakes (Bedford and
Schwab 1998).

4.9 Summary 

There are two main thrusts to this paper. The first thrust is the creation of a model
algorithm whose vertical coordinate system is quite general; this algorithm invites
future inventiveness with other grids beyond the preliminary tests presented in this

φ i 1+ φ i 1–– 2R 1– φ i 1+ 2φi– φi 1–+( )=
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paper. The second thrust is a model intercomparison study of conventional z - level
and σ - coordinate vertical grids and one unconventional generalized sigma grid.
The intercomparisons are unique in that all aspects of the models are identical
except for the vertical grid specification. One finding is that the sigma grids can
tolerate much smaller levels of horizontal viscosity and diffusivity. In shallow
water, errors arise in the z - level grid which, depending on viscosity (which itself
may be considered a source of error), are of a different nature and obviously much
larger than errors due to the sigma pressure gradient error. 

In the final analysis, the straight σ coordinate grid may be a good choice for
many ocean applications, including basin-scale climate calculations (Ezer and Mel-
lor 1997). Song and Haidvogel (1994) claim that adequate resolution of the surface
layers are a significant advantage of the s - coordinate grid. However, if the vertical
grid spacing is, say, logarithmically reduced near the surface to adequately resolve
the surface layer in the deepest portions of the model domain, then the only penalty
of the σ grid is that, in the shallower portions, the surface layers are over resolved.
In any case, the new algorithm, developed here for a widely used sigma coordinate
ocean model (POM), provides a tool to further investigate the differences between
different grids, and provides more flexibility for users to optimize their grids for
particular applications. 
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