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Abstract

During the course of developing new numerical algorithms for a terrain-following ocean modeling
system (TOMS), different numerical aspects have been evaluated through a comparison between two widely
used community ocean models, the Princeton ocean model (POM) and the regional ocean modeling system
(ROMS). While both models aim at modeling coastal to basin-scale problems using similar grids, their
numerical algorithms, code structure, and parameterization options are very different. Sensitivity studies
with an idealized channel flow and a steep seamount configuration demonstrate how different algorithms in
the two models may affect numerical errors, the stability of the code and the computational efficiency. For
example, new pressure gradient schemes using polynomial fits and new time stepping algorithms may re-
duce numerical errors and allow using longer time steps than standard schemes do. However, the new
schemes may require more careful choices of time steps and the use of higher order advection schemes to
maintain numerical stability. � 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Free surface, terrain-following (sigma or s-coordinates) ocean models emerged some 20 years
ago from the need to model turbulent processes (Mellor and Yamada, 1982) in surface and bottom
boundary layers and to simulate flows in estuaries and coastal regions. These efforts led to the
development of the Blumberg–Mellor model (Blumberg and Mellor, 1983, 1987) that later became
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known as the Princeton ocean model (POM). Developments of other ocean models of this class
followed with the development of the semi-spectral primitive equation model (SPEM, Haidvogel
et al., 1991), the s-coordinate Rutgers model (SCRUM, Song and Haidvogel, 1994), and the re-
gional ocean modeling systems (ROMS, Haidvogel et al., 2000; Shchepetkin and McWilliams,
2000). Earlier versions of the latter models with either vertical spectral schemes or with rigid lid
surfaces were replaced by finite three-dimensional differencing and free surface schemes, so that
SCRUM and ROMS eventually became very similar to the POM in most aspects. These models
use curvilinear orthogonal horizontal coordinates, a horizontal numerical staggered ‘‘C’’ grid
(Arakawa and Lamb, 1977), and a vertical staggered grid with either a sigma or a more general s-
coordinate system. However, there are considerable differences in numerics and parameterizations
between the different models, as will be discussed later. The above models are now in use by over
1000 users world wide. Support to these community models is provided through web and internet
communication by Princeton University (http://www.aos.princeton.edu/WWWPUBLIC/htdocs.
pom) and Rutgers University (http://marine.rutgers/edu/po). Another sub-class of coastal ocean
models which involved finite element (Lynch and Gray, 1980) or spectral element (Iskandarani
et al., 1995) methods will not be discussed here; for a more complete review of coastal ocean
models see Greatbatch and Mellor (1999) and Haidvogel and Beckmann (1999).

The attractiveness of terrain-following ocean models is in their smooth representation of
topography and their ability to simulate interactions between flows and topography. In contrast,
z-level models have difficulties in simulating overflow processes and bottom boundary layer dy-
namics because of the step-like representation of topography (Gerdes, 1993; Beckmann and
D€ooscher, 1997; Winton et al., 1998; Pacanowski and Gnanadesikan, 1998). On the other hand, the
numerical error in the pressure gradient calculation over steep topography has been an area of
concern for terrain-following ocean models (Haney, 1991; Beckmann and Haidvogel, 1993;
Mellor et al., 1994, 1998). While this numerical error can not be completely eliminated as long as
the grid does not follow geopotential or isopycnal surfaces, new methods that involve for ex-
ample, high order or z-level interpolation schemes (McCalpin, 1994; Chu and Fan, 1997, 1998;
Kliem and Pietrzak, 1999), or parabolic reconstruction schemes (Shchepetkin and McWilliams,
2002) may reduce this error to an acceptable level below other numerical errors. Some of these
pressure gradient methods will be tested here, as well as new time stepping algorithms. While
traditionally, terrain-following ocean models were used in the past mostly for regional coastal
simulations, there are now a growing number of applications of these models for basin scale
(Haidvogel et al., 2000; Ezer and Mellor, 1997, 2000) and even long-term climate studies (Ezer,
1999, 2001). Since large-scale and long-term problems may not allow the use of very high reso-
lution grids, the pressure gradient error in those models may be a larger problem than it is in
regional models with finer grids.

The main aim of this paper is to review and evaluate some new developments in terrain-fol-
lowing ocean models. A future expert terrain-following ocean modeling system (TOMS) is now
under development and being tested at several institutions. The study follows a recent review of
ocean climate models by Griffies et al. (2000) which puts more emphasis on z-level and isopycnal
models rather than on sigma-coordinate models. To demonstrate the effect of various numerical
schemes and parameterizations, sensitivity experiments and comparisons of two of the most
widely used community ocean models, POM and ROMS, are performed. While both models solve
the same primitive equations on similar numerical grids, the numerical algorithms, code structure
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and modeling concepts in these models are completely different. The basic POM is a simple stand-
alone code with limited number of options and standard numerical schemes (e.g., a three-level
leap-frog time stepping); the numerical code in the basic POM model structure has not changed
much since it was originally developed. New or improved versions such as a non-Boussinesq
version (Mellor and Ezer, 1995), a version with a generalized coordinate system (Mellor et al.,
2002) or high order pressure gradient schemes (Chu and Fan, 1998) are provided as stand-alone
codes or replacement subroutines. Because of its simplicity and robustness POM quickly became
very popular (during the last decade the number of POM users roughly doubles every two years);
the model is especially popular in many countries and institutions with limited computational
resources. The concept of ROMS (and TOMS) on the other hand is to provide the best and
newest available algorithms in a modular code similar to the concept of the modular ocean model
(MOM, Pacanowski and Griffies, 1999). A large number of choices, including different advection,
diffusion and pressure gradient schemes, different boundary conditions, and even data assimila-
tion schemes can be selected; the desired executable code is configured through a C-language pre-
processing (CPP) commands. The variety of options in ROMS provides users with a larger
flexibility than that provided to POM users, but users may need more knowledge on the behavior
of the model under different parameterizations and a longer learning period than that of a simpler
code. Because of these differences, the ROMS code is almost 20 times larger than the POM code;
however, some of its advanced numerics may be more accurate and relatively more efficient than
standard codes are, as will be shown below.

2. The seamount test case configuration

A channel flow over and around a tall seamount (on an f-plane) is an idealized, but difficult to
resolve problem, that is implemented for this study. The studies of Beckmann and Haidvogel
(1993) and Mellor et al. (1998) have used a similar configuration. The topography includes a
square domain with closed boundaries in the north and south and a steep seamount in the center
of the domain (Fig. 1). The bottom topography is defined by

Hðx; yÞ ¼ Hmax½1 � Ae�ðx2þy2Þ=L2 �: ð1Þ
The maximum depth is Hmax ¼ 4500 m in all the cases. Two experimental designs, a ‘‘very steep’’

case with A ¼ 0:9 and L ¼ 25 km and a ‘‘moderately steep’’ case with A ¼ 0:6 and L ¼ 50 km are
used. The initial temperature (in �C) depends only on �Hmax < z < 0, and defined by

T ðx; y; zÞ ¼ 5 þ 15ez=1000: ð2Þ
Salinity is constant at 35 psu (a similar, non-linear equation of state is used by both models). A

constant eastward flow of 0:2 m s�1 is imposed on the east and west open boundaries, which
results in about 1 m surface elevation change across the 512 km wide channel. (An exception is the
pressure gradient test of Section 3.3, where closed boundary conditions with no external forcing
replaces the channel flow.) The horizontal model grid includes 64 � 64 grid cells with a constant
grid size of Dx ¼ Dy ¼ 8 km. With this resolution, the maximum slope parameter s ¼ jDH j=2H
(Beckmann and Haidvogel, 1993; Mellor et al., 1998) and the maximum so-called ‘‘hydro-
static consistency’’ parameter r ¼ jrDH=HDrj (Haney, 1991) are s ¼ 0:07 and r ¼ 2:7 for the
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moderately steep case (similar to Shchepetkin and McWilliams (2002)) and s ¼ 0:36 and r ¼ 14:2
for the very steep case (similar to Beckmann and Haidvogel (1993), and Mellor et al. (1998)). The
vertical grid includes 20 active ‘‘standard’’ sigma layers evenly distributed such that r ¼
ðz� gÞ=ðH þ gÞ, where g is the free surface and �1 < r < 0 (the more general s-coordinate system
in ROMS was set to match the standard POM distribution of layers and we adopt the POM
formalism here). It should be mentioned that, both, POM and ROMS, allow variable horizontal
grids (e.g., an increase resolution over the seamount as in Mellor et al. (1998)), or uneven and
more general vertical layer distributions, not necessarily conforming to the standard sigma (e.g.,
increase resolution near the surface or bottom such as in Song and Haidvogel (1994) and in
Mellor et al. (2002)). However, for simplicity and ease of the comparison, these options have not
been used here. To allow a fair comparison between the models, no attempt is made to optimize
the vertical grid spacing for each model.

3. Results and comparisons

In the following sections we examine some of the numerical aspects and differences between the
two models. For a complete detailed description of the models’ equations the reader is referred to

Fig. 1. A diagram of the seamount setup configuration (the very steep case). The temperature profile is shown on the

north wall of the domain and the sigma layers are shown on the eastern boundary of the domain.

252 T. Ezer et al. / Ocean Modelling 4 (2002) 249–267



other sources (Blumberg and Mellor, 1987; Mellor, 1996; Haidvogel et al., 2000; Shchepetkin and
McWilliams, 2000, 2002); here we only highlight some important differences in numerical algo-
rithms and demonstrate how these differences may affect the results and the choices of parameters.

3.1. Subgrid-scale parameterizations and advection schemes

Both models provide a variety of horizontal and vertical advection and diffusion parameter-
izations and options; many more options are available in the modular ROMS compared to a
limited number of options in POM. For the vertical mixing, both models provide the Mellor–
Yamada (MY) level 2.5 closure scheme (Mellor and Yamada, 1982), POM includes also a recently
improved version of the MY scheme (Ezer, 2000; Mellor, 2001). ROMS provides additional
options for Brunt–Vaisala dependent mixing and a non-local K-profile parameterization (KPP)
(Large et al., 1994). The often used choices are MY for POM and KPP for ROMS. For horizontal
mixing of tracers the standard POM code provides only a Laplacian, along-sigma, velocity-
dependent Smagorinsky diffusivity (Ezer and Mellor, 2000; Mellor and Blumberg, 1985;
Smagorinsky, 1963). ROMS provides additional options, including the Gent–McWilliams eddy
induced mixing (Gent and McWilliams, 1990). Horizontal mixing of tracers and momentum in
ROMS can be rotated to be along sigma (or s) surfaces, along geopotential (z) or along isopycnals
(q), and there is a choice of constant Laplacian or Biharmonic formulation. Discussion of the
advantages and disadvantages of the above schemes are beyond the scope of this paper (but see
for example the review by Griffies et al. (2000)).

Advection is of major importance for coastal ocean models if processes such as sediment
transport or estuarine and river outflows are to be modeled, as well as for climate studies where
deep water formation and eddy driven transports may be important. Since the simple and com-
monly used second order centered differencing advection scheme may produce an artificial
‘‘overshoot’’ of tracer values for sharp fronts, many alternative advection schemes with various
levels of complexities have been developed (see for example recent comparisons of different ad-
vection schemes by Pietrzak (1998), and by Hecht et al. (2000)). As alternatives to the second
order centered advection scheme in the standard POM code, a few well known upstream biased
second and third order schemes are now available to users (Lin et al., 1994; Smolarkiewicz, 1984).
ROMS, on the other hand, provides a set of newly implemented advection schemes for mo-
mentum and tracers (Shchepetkin and McWilliams, 1998, 2000), which include second (CADV2)
and fourth (CADV4) order centered horizontal and vertical advection schemes, and third
(UADV3) and fourth order upstream biased advection schemes. Table 1 and Fig. 2 summarize the
computational cost of some of these schemes when implemented in POM or ROMS (see more on
the computational cost in the next section).

To demonstrate the effect of the different advection schemes we compare here three schemes
and two models. In this difficult test of forced flow over a very steep seamount, horizontal dif-
fusion is null, but nevertheless both models are numerically stable. Because of the smooth rep-
resentation of topography in terrain-following ocean models, these models can handle much lower
diffusivities than z-level models with a step-like topography, as demonstrated recently by Mellor
et al. (2002). The mean properties across the channel, which include a 1 m sea level change and 450
Sv ð1 Sv ¼ 106 m3 s�1Þ total transport, hardly show any visible differences between the different
experiments. Therefore, only the anomalies relative to the zonal means are shown; these are the
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Table 1

Comparisons of computational costs for POM and ROMS when using different features

Basic model Model featuresa Computation time per grid point

per time step (in 10�3 s)

Computation time for

one day of integration (in s)

POM CADV2 12.5 21.3

POM UADV2 13.2

POM MPDATA2 14.0

POM MPDATA3 17.1

POM CCD6 207.4

POM ZINT 40.0

ROMS CADV2 17.3 21.6

ROMS CADV4 19.3

ROMS UADV3 20.0

The grid configuration includes 64 � 64 � 20 active grid cells with a resolution of 8 km. All the experiments were done

with serial codes running on a Cray T90 super-computer.
a CADV2– second order centered advection scheme, UADV2 – second order upstream-biased advection scheme (Lin

et al., 1994), MPDATA2 – second order upstream-biased advection scheme (multidimensional positive definite ad-

vection transport algorithm based on Smolarkiewicz, 1984), MPDATA3 – third order upstream-biased advection

scheme (MPDATA with three iterations), CCD6 – sixth order combined compact difference pressure gradient scheme

(Chu and Fan, 1997, 1998), ZINT – z-level interpolation pressure gradient scheme (Kliem and Pietrzak, 1999), CADV4 –

fourth order centered advection scheme (Shchepetkin and McWilliams, 1998, 2000), UADV3 – third order upstream-

biased advection scheme (Shchepetkin and McWilliams, 1998, 2000).

Fig. 2. Computational cost per time step of different codes: standard POM with second order centered advection

scheme (P-CADV2), POM with second order upstream-biased advection scheme (P-UADV2), POM with third order

upstream-biased advection scheme (P-UADV3), ROMS with second order centered advection scheme (R-CADV2),

ROMS with fourth order centered advection scheme (R-CADV4), and ROMS with third order upstream-biased ad-

vection scheme (R-UADV3). Values are in percent relative to the standard POM. All calculations refer to serial codes

with 64 � 64 � 20 grid points running on one Cray T90 processor and excluding compilation time.
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surface elevation (Fig. 3) and the barotropic stream function (Fig. 4) after five days of integration
(the minimum, maximum and standard deviation are also indicated in those figures). The modi-
fication of the zonal flow by the seamount includes an asymmetric sea level increase upstream the
seamount and sea level decrease downstream the seamount (Fig. 3), and the development of
cyclonic and anticyclonic circulation cells (Fig. 4). Pressure gradient errors (discussed later) are
responsible for changes of the order of a few tenths of cm in sea level anomaly and of the order of
1 Sv in transport, but only affect the area in the very close vicinity of the seamount (here both
models use a similar density Jacobian pressure gradient scheme). Most of the differences in the
solutions are the result of the advection schemes. When both POM and ROMS use a second order
centered advection scheme (top panels of Fig. 3), POM seems to produce a smoother elevation
field, a possible result of the smaller numerical diffusion in ROMS. The fourth order centered
advection scheme (Fig. 3(d)) is even noisier than the second order scheme for this case, but the
third order upstream biased scheme (the default in ROMS, Fig. 3(c)), which has more numerical

(b)

(c) (d)

(a)

Fig. 3. Surface elevation anomaly (relative to the zonal mean) after five days using different advection schemes: (a)

POM with a second order centered scheme, (b) ROMS with a second order centered scheme, (c) ROMS with a third

order upstream biased scheme, and (d) ROMS with a fourth order centered scheme. Contour interval is 0.5 cm;

minimum, maximum and standard deviation values (in cm) are indicated at the top of each panel.
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diffusion compared with centered schemes, provides a much smoother solution without the need
for additional diffusion. Experiments (not shown) where Laplacian diffusion of 50, 100 and
500 m2 s�1 were added, show similar smoother solutions using POM for all cases with the cen-
tered schemes. The choice of advection scheme has little effect ð< 1 Sv) on the model barotropic
transport, but there are some differences in transports between the two models due to differences
in the numerical advection and in pressure gradient calculations (see Section 3.3).

3.2. Time stepping schemes

Both, POM and ROMS models, use time splitting schemes, where the two-dimensional, ver-
tically integrated momentum equations (i.e., the ‘‘external mode’’) are solved using a short time
step to resolve fast moving barotropic waves, and the three-dimensional momentum equations
(i.e., the ‘‘internal mode’’), are solved using a longer time step. This splitting technique is common
to many free surface ocean models, since it is more efficient than solving the three-dimensional
equations with a short time step required by the Courant–Friedrichs–Lewy (CFL) stability
condition (Courant et al., 1967). However, the different truncation errors in the two sets of

(a) (b)

(c) (d)

Fig. 4. Same as Fig. 3, but for the stream function anomaly. Contour interval is 5 Sv.
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equations require numerical adjustments or filters to make sure that the equations correctly satisfy
the continuity equations and conserve tracers quantities. POM and ROMS use different time
stepping schemes and different filtering technique in their time splitting algorithms, as described
below.

The standard POM uses an explicit, second order in time, ‘‘leap-frog’’ (LF) numerical scheme
(except the vertical diffusion terms in the internal mode which uses an implicit scheme to allow a
high vertical resolution near the surface). Therefore, the time stepping of horizontal advection and
horizontal diffusion of a property Q can be written in the general form,

Qnþ1 ¼ Qn�1 þ 2Dt½advðQnÞ þ difðQn�1Þ�; ð3Þ

where n� 1; n and nþ 1 represent the three time levels, t � Dt, t, and t þ Dt, respectively, and Dt is
the appropriate time step (internal or external). To prevent the well-known time-splitting problem
of diverging odd and even time steps associated with the centered time differencing scheme, a
simple Asselin filter (Asselin, 1972) is applied at each time step, so the smoothed solution is

Qn
s ¼ Qn þ a=2ðQnþ1 � 2Qn þ Qn�1

s Þ; ð4Þ

where a ¼ 0:05 is often used. A simple adjustment of the internal velocities to the vertically in-
tegrated external velocities at each internal time step is used in POM (in contrast, as explained
below, a more sophisticated filter in ROMS couples the two modes every external time step). The
most restrictive condition for choosing the time step in POM is usually the CFL computational
stability condition for the external time step,

DtE 6C�1½ðDxÞ�2 þ ðDyÞ�2��1=2; C ¼ 2ðgHÞ1=2 þ Umax: ð5Þ
H is the depth, g is the gravitational acceleration and Umax is the maximum velocity. A similar
condition for the internal time step, where C is replaced by the internal gravity wave speed,
permits a larger time step than (5). The recommended ratio between the internal and the external
time steps, DtI=DtE, is about 20–80; we will perform later some sensitivity experiments to explore
the effect of this ratio on the stability of the two models.

While the above LF numerical time stepping in POM is simple and relatively standard, ROMS
uses a predictor-corrector (PC) time stepping which in its general form (some variations for
different terms are being tested) involves two steps, a LF predictor step of the form

Qnþ1;
 ¼ Qn�1 þ 2Dt funcðQnÞ ð6Þ
and a corrector step of the form

Qnþ1 ¼ Qn þ Dt funcða1Qnþ1;
 þ a2Qn þ a3Qn�1Þ: ð7Þ
The coefficients ða1; a2; a3Þ ¼ ð5=12; 2=3;�1=12Þ are as in the Adams–Moulton algorithm

(Canuto et al., 1988). The additional computational cost of the PC scheme compared with the
centered in time scheme may be offset by allowing the use of a larger time step (see Shchepetkin
and McWilliams (2000) for detail analysis of the stability properties of the scheme). The coupling
of the barotropic (external) and baroclinic (internal) modes in ROMS uses a Gaussian-like filter
so that for example the vertically averaged U component of velocity in the baroclinic mode (in-
dicated by a subscript c) is coupled to the barotropic component (indicated by a subscript t)
according to
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�UUnþ1
c ¼

XN

m¼1

am �UUm
t ; ð8Þ

where there are N fast barotropic time steps in each baroclinic time step n. The weights am are
chosen such that the continuity equation is exactly satisfied (Shchepetkin and McWilliams, 2000).
Here we will try to demonstrate the sensitivity of the scheme to different time step choices and
compared it with the POM scheme for one particular configuration.

A series of sensitivity experiments was performed with both models using identical configu-
ration, a constant horizontal Laplacian viscosity of 500 m2 s�1 and a constant vertical mixing
coefficient of 2 � 10�5 m2 s�1. In each experiment the model (either POM or ROMS) was exe-
cuted for five days with different internal and external time steps, and the solution was checked for
its stability by evaluating properties such as surface elevation and kinetic energy, the results are
summarized in Table 2. A solution is defined to be unstable if the model blew up or if the vari-
ations in total kinetic energy do not decay within the simulated period. As expected, the maximum
external time step in POM is determined by the CFL condition (actually allowing a maximum
external time step slightly larger than the theoretical one). The regime of stable solutions in
ROMS is quite different, allowing the use of internal time steps about 1.5 times larger than in
POM and external time step of about twice that allowed by the CFL condition. For short internal
time steps POM does seem to be more stable, allowing the use of longer external time step than
ROMS does for the same internal time step (e.g., for a baroclinic time step of DtI ¼ 180 s in Table
2, POM requires only 11 barotropic substeps, while ROMS requires 22). Users of these models
should be aware of these differences in behavior when choosing the time steps for particular
applications. For the same parameterizations (with a centered second order advection scheme)
ROMS requires about 40% more computational time per time step than the standard POM does
and for the ROMS default of a third order upstream biased advection scheme ROMS requires
about 60% more computational time per time step than the standard POM does (Table 1 and Fig.
2). However, when taking into account the maximum time step allowed by the numerical stability
of the two models, the computational time required, say, one day of integration, is almost

Table 2

The sensitivity of the model stability to 3D/internal time step (DtI in columns) and 2D/external time step ðDtE in rows)

Model DtE (s) DtI ¼ 180 s DtI ¼ 360 s DtI ¼ 540 s tI ¼ 720 s DtI ¼ 900 s DtI ¼ 1080 s

POM 8 22 45 67 90 Unstable Unstable

POM 12 15 30 45 60 Unstable Unstable

POM 16 11 22 34 45 Unstable Unstable

POM 20 Unstable Unstable Unstable Unstable Unstable Unstable

ROMS 8 22 45 67 90 112 Unstable

ROMS 12 Unstable 30 45 60 75 Unstable

ROMS 16 Unstable 22 34 45 56 Unstable

ROMS 20 Unstable 18 27 36 45 Unstable

ROMS 24 Unstable Unstable 22 30 37 Unstable

ROMS 28 Unstable Unstable 19 25 32 Unstable

ROMS 32 Unstable Unstable Unstable Unstable Unstable Unstable

The values of DtE were rounded to the nearest whole numbers. The split mode ratio DtI=DtE is indicated for each pair of

time steps with a stable solution. The CFL stability condition for an 8 km grid mesh implies DtE < 13 s.
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identical in the two models (right column of Table 1) due to the largest time step that can be used
in ROMS. One should keep in mind the fact that the number of lines of code in the modular
ROMS is about 20 times the number of lines in the simpler POM code (e.g., for this application,
compilation time is 70 s for POM and 600 s for ROMS and memory required is 29 Mb for POM
and 45 Mb for ROMS); therefore, the ROMS code is quite efficient considering its size. Further
comparisons of the performance of the models on massively parallel computers will be reported in
a separate paper.

The spinup during the adjustment process is quite different between the two models (Fig. 5),
with apparent strong decaying fluctuations in ROMS but not in POM, where the oscillations
decay during the first day of integration. The slightly more energetic flow field in ROMS may
relate to its small numerical diffusion. While future versions of ROMS may use improved schemes
with reduced oscillatory behavior, it is nevertheless important to understand the adjustment
process in ROMS. Fig. 6 shows the result of varying the time steps DtI and DtE (in the very steep
seamount case). The solution converges faster when the external time step decreases (upper
panels), but also when the internal time step increases (i.e., when there are more barotropic time
steps for each baroclinic time step, right panels). This behavior contradicts the common thinking
(and the behavior of POM and other models with standard time stepping algorithms) of increased
stability with decreasing time step, but is the result of the predictor–corrector time stepping and in
particular, the effect of the filter coupling the two modes. If the ratio between the two modes is

Fig. 5. Variations of mean kinetic energy for a channel flow over a very steep seamount for ROMS (thin line) and POM

(heavy line). Both models use the same time steps, DtI ¼ 360 s;DtE ¼ 12 s.
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large, a strong coupling is applied by the filter. In ROMS, unlike POM, every fast time step is used
in the coupling to the slow time stepping, thus choosing a longer baroclinic time step implies a
filter with a wider band and the solution is less prone to numerical instability associated with the
splitting modes.

Fig. 7 shows the dependency of the adjustment process to different bottom topographies. For a
medium seamount case with less steep slopes (Fig. 7(b)), the kinetic energy increases, probably
due to a decrease in the blocking of the mean flow by the Taylor Column effect; additional
modulation of the fluctuations are seen as well. Even flat bottom cases (Figs. 7(c) and (d) show
similar fluctuations, indicating that the oscillations are not the result of pressure gradient errors
over the steep topography (discussed later). The period of the high frequency oscillation is 85 min
for the case with a water depth of 4500 m (Fig. 7(c)) and 111 min for the case with a water depth
of 2500 m (Fig. 7(d)), exactly the time it takes a barotropic gravity wave to propagate across the
channel and back, with a phase propagation speed given by C ¼ ðgHÞ1=2

. Therefore, these os-
cillations are clearly related to the adjustment of basin-scale barotropic waves. Experiments with
no stratification (not shown) have similar oscillations thus confirming that these are barotropic
waves. The Aselin filter in POM (applied only at every baroclinic time step) seems to damp the
barotropic waves much faster than the coupling filter in ROMS which is applied at every baro-
tropic time step. The lower frequency modulations, with periods of about one day, do not depend
on the time step and are believed to be due to inertial oscillations.

(a)

(b) (d)

(c)

Fig. 6. Variations of mean kinetic energy in ROMS for the steep seamount case with various time steps: (a)

DtE=DtI ¼ 12 s=360 s, (b) DtE=DtI ¼ 24 s=360 s, (c) DtE=DtI ¼ 12 s=720 s, and (d) DtE=DtI ¼ 24 s=720 s.
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3.3. Pressure gradient schemes

Pressure gradient errors over steep topography in terrain-following ocean models have been an
issue of concern for a long time (Haney, 1991; Beckmann and Haidvogel, 1993; Mellor et al.,
1994, 1998). In additional to common remedies such as removing a mean density profile and
bottom topography smoothing, several more sophisticated (and often more computationally
expensive, Table 1) approaches have been tried in order to reduce such numerical errors to ac-
ceptable levels, they include for example high order schemes (McCalpin, 1994; Chu and Fan,
1997, 1998) and interpolation to z-levels (Kliem and Pietrzak, 1999). Recent efficient parabolic
spline schemes reconstruct pressure or density fields (Shchepetkin and McWilliams, 2000, 2002);
these schemes promise great improvements in accuracy and are compared here against other
schemes.

The above seamount test case is now used to study the pressure gradient errors in ROMS and
POM. With no external forcing, and initial vertical stratification with no horizontal density
gradients according to (2) (and with no removal of a mean density profile; its removal is a
common practice in POM), any calculated velocity is considered an error. During a prognostic
run the erroneous velocities will create density changes until an adjusted stage is reached through
advection and diffusion processes. The seamount case is an especially difficult test since it includes
the well known two-dimensional ‘‘sigma errors of the first kind’’, discussed by Haney (1991) and

(a)

(b) (d)

(c)

Fig. 7. Same as Fig. 5, but for various bottom topographies: (a) very steep seamount, (b) medium steep seamount, (c)

flat bottom with a depth of 4500 m, and (d) flat bottom with a depth of 2500 m.
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Mellor et al. (1994), but it is also subject to three-dimensional ‘‘sigma errors of the second kind’’
which depend on the curvature of the topography and produce an eight-lobe error field structure
around the seamount (Mellor et al., 1998). Seven pressure gradient algorithms between the two
models are evaluated for the same problem configuration:

(1) POM with a standard density Jacobian scheme (Mellor et al., 1998), P-DJ.
(2) POM with a sixth order, combined compact difference scheme (Chu and Fan, 1997), P-CCD.
(3) ROMS with a finite-volume pressure Jacobian scheme (Lin, 1997), R-FPJ.
(4) ROMS with a weighted density Jacobian scheme (Song, 1998), weighting parameter

gamma¼ 0, R-DJ.
(5) ROMS with a weighted density Jacobian scheme (Song, 1998), weighting parameter

gamma¼ 0.125, R-WDJ.
(6) ROMS with a pressure Jacobian scheme using monotonized quadratic polynomial fits (Shche-

petkin and McWilliams, 2002), R-PJQ.
(7) ROMS with a density Jacobian scheme using monotonized cubic polynomial fits (Shchepetkin

and McWilliams, 2002), R-DJC.

For a complete evaluation of these schemes for various parameters and detailed numerical
descriptions one should refer to the appropriate references given above, here we only highlight the
basic differences between the schemes and demonstrate how they affect POM and ROMS cal-
culations. The ROMS weighted scheme, R-WDJ, effectively moves the location of the averaged
density in a model grid cell depending on the gamma parameter in ROMS. For gamma¼ 0 (R-
DJ) the scheme should be identical to POM’s P-DJ scheme, for gamma¼ 0.25 the scheme should
be similar to the original Song (1998) scheme, and gamma¼ 0.125 was found to be an empirically
optimal value (Shchepetkin and McWilliams, 2002, note however a difference in notation with a
factor of 4 between the parameter used in the above paper and that used in ROMS and here). The
polynomial fit schemes, R-PJQ and R-DJC, reconstruct the pressure or density fields and then use
an analytical integration.

The comparison between all pressure gradient algorithms in terms of mean kinetic energy error
is shown in Fig. 8 and the maximum velocity errors are summarized in Table 3. One should keep
in mind that in these tests (in particular the very steep seamount case) the maximum slopes are
larger than in most practical applications and these experiments are intended to test schemes to
their extreme limits. The removal of mean density profiles in POM and topographical smoothing
to reduce r and s will result in smaller errors than those shown in Table 3. First, we noticed that
the finite volume pressure Jacobian scheme of Lin (1997), R-FPJ, did not perform well due to its
difficulty in resolving the large curvature of the steep seamount (it blew up in the very steep se-
amount case, as did the pressure Jacobian scheme, R-SPJ). When ROMS uses a density Jacobian
scheme similar to that used in POM, the errors are somewhat larger than in POM due to dif-
ferences in the stability of the basic numerics. However, the three more elaborated schemes (R-
WDJ, R-PJQ, and R-DJC) reduce errors considerably (Fig. 8(a)). The smallest error is obtained in
the high order accurate density Jacobian scheme with monotonized cubic polynomial fits (R-DJC)
used in ROMS. The small error in R-DJC is comparable to the sixth order scheme (P-CCD) used
in POM for the moderate seamount case, but R-DJC is computationally an efficient scheme that
does not require more computations than the other schemes, while P-CCD is extremely expensive

262 T. Ezer et al. / Ocean Modelling 4 (2002) 249–267



in the way it is currently written (Table 1). In the extremely steep seamount case the high order
scheme is the most accurate one, while both R-DJC and the weighted scheme R-WDJ have similar

(a)

(b)

Fig. 8. Mean kinetic energy error (in kg m2 s�2) for different pressure gradient schemes (see text for notations): (a) the

moderately steep and (b) the very steep seamount cases. Schemes that blew up are not shown.
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errors. Polynomial fitting of density rather than pressure seems especially advantageous for a very
steep topography. The magnitude of the pressure gradient error depends also on the horizontal
and vertical advection of tracers, time-stepping, and the equation of state for seawater (Shche-
petkin and McWilliams, 2002), but the relative performance of the various schemes should stand
for other parameterizations than those tested here. It should be noted that the relatively short
adjustment time obtained here, in Beckmann and Haidvogel (1993), and in Mellor et al. (1998),
compared with the much longer time scale in Shchepetkin and McWilliams (2002) relate to the
much lower diffusion used in the latter study.

4. Discussion and conclusions

The paper reviewed some of the new developments in ocean models that will lead to a new
modular, expert, terrain-following ocean modeling system (TOMS) now under development and
testing at several institutions. Modular configuration provides users with many parameterizations
and numerical options, but also requires considerable testing to provide users with enough
knowledge to select the best options for particular applications. Comparisons between two of the
most widely used community ocean models of the terrain-following (sigma or s-coordinate) type,
POM and ROMS, demonstrate how numerical algorithms and parameterizations may affect the
results and how the same parameterization may affect each model differently. As applications of
this type of ocean models often use high resolution grids and additional sophisticated data as-
similation schemes in realistic applications, the computational efficiency becomes important, thus
emphasis was given here to the computational cost of various configurations and models (Table
1). A new time stepping scheme implemented in ROMS show promising results in allowing the use
of time steps larger than that implied by the common CFL stability condition, but on the other

Table 3

Summary of pressure gradient errors for different schemes

Pressure gradient scheme Seamount

configuration

Maximum barotropic

velocity error (cm s�1)

Maximum baroclinic

velocity error (cm s�1)

P-DJ Very steep 10.9 25.5

Steep 0:98 1:88

P-CCD Very steep 1:6 3:1
Steep 0:02 0:17

R-FPJ Very steep * *

Steep 30.0 56.0

R-DJ Very steep 31.7 81.3

Steep 3.7 5.9

R-WDJ Very steep 13.4 19.8

Steep 0:35 0:85

R-PJQ Very steep * *

Steep 0:03 0:3
R-DJC Very steep 11.0 14.2

Steep 0:06 0:13

Cases which blew up before day 5 are marked by ‘‘*’’. Results with relatively small errors (barotropic velocity less than

2 cm s�1 and baroclinic velocity less than 4 cm s�1) are underlined. See text for definitions of the schemes.
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hand the choice of the split between the baroclinic (internal) and the barotropic (external) time
steps may require a more careful consideration due to a more elaborate coupling between the two
modes. Several new pressure gradient schemes, based on polynomial fits of pressure or density
fields, show promising results and compare favorably with more expensive high order schemes. If
this well known problem of pressure gradient errors in (atmospheric and oceanic) sigma models is
reduced to a manageable level below other numerical errors, it will allow more accurate simu-
lations of a larger range of applications without the need to smooth topographies or the use of
very high resolutions. This study could not possibly test all the available options in sigma ocean
models. It just demonstrates a few aspects of the models from the point of view of users who
would like to know how to chose different parameters, how these choices may affect the results,
and the computational cost. Promising approaches for future ocean modeling, not discussed here,
are the use of generalized grids that will allow an optimal combination of sigma, z-level and is-
opycnal grids, such approaches are now being tested by several ocean modeling communities
(Mellor et al., 2002; Bleck, 2002).
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