

On the Computational Efficiency of Ocean Models:

A High Performance Equation of State

Dov Kruger1, Tal Ezer2, Anne M. Pence1 and Alan F. Blumberg1

1Davidson Laboratory, Civil, Environmental and Ocean Engineering

Stevens Institute of Technology, Hoboken, NJ 07030

2Program in Atmospheric and Oceanic Sciences, Princeton University

P.O.Box CN710, Sayre Hall, Princeton, NJ 08544-0710

Corresponding author email: ezer@splash.princeton.edu

To be submitted to:

Journal of Atmospheric and Oceanic Technology

December 20, 2004

 2

Abstract

 The numerical representation of the equation of state (EOS) in ocean models is

reevaluated in terms of its computational efficiency. Ways to speedup the EOS as well as

basic codes in ocean models are discussed and demonstrated. It is shown that even a

simple rearrangement of a calculation order can significantly speedup the codes currently

used in several community terrain-following ocean models. Using a new EOS with

particular fit to data that takes into account the computational cost, can speedup the code

even further. Various EOS codes were tested on different computer platforms,

demonstrating the potential of speeding up codes by as much as 2-3 times on a

supercomputer and up to 6-16 times on laptops and personal computers.

1. Introduction

 The equation of state, used to relate density of sea water to salinity, temperature

and pressure, has concerned oceanographers for a long time (e.g., Fofonoff, 1956). While

earlier efforts have used simple linear fits to data, a more accurate but complex equation

of state (EOS) became the standard (UNESCO, 1981). However, the formulation was

very computationally intensive, so ocean modelers have attempted to reduce the cost with

improved formulations that may trade off accuracy for speed. For example, early z-level

models, whose vertical grid follows constant depth levels, have used a table of

coefficients for each level (Bryan and Cox, 1972). Simplified approach of this nature can

not be used in non-aligned vertical grids such as in terrain-following (“s” or “sigma”

coordinates) models (e.g., the Estuarine, Coastal and Ocean Model, ECOM, Blumberg et

al., 1993; the Princeton Ocean Model, POM, Blumberg and Mellor, 1987; the Regional

Ocean Modeling System, ROMS, Shchepetkin and McWilliams, 2005), or in generalized

coordinate ocean models (Ezer and Mellor, 2004). Note that early sigma models were

used mostly for shallow coasts and estuaries, so the pressure dependency of the EOS was

often neglected. The extension of sigma ocean model applications to deep-ocean and

basin-scale problems (Ezer and Mellor, 1997; Haidvogel et al., 2000) require to include

 3

the pressure effect and led, for example, to the EOS suggested by Mellor (1991), which

simplified the pressure term in the UNESCO formulation.

 There are two factors limiting computational fluid dynamics models, memory and

computational time. In the case of ocean modeling, the memory size is usually less of a

problem (except in very high resolution or global models), but time is a limiting factor

(e.g., calculations of a real-time daily forecast should take much less than a day to be

useful). Thus, a faster computation means the ability to have a larger domain, a finer grid,

or the ability to perform more experiments. There are three basic approaches for speeding

up codes. The first approach is by using parallel codes (e.g., the ROMS code) that take

advantage of multiprocessor supercomputers. The second approach is by using numerical

schemes that allow longer time steps between calculations (Ezer et al., 2002; Shchepetkin

and McWilliams, 2005). The third approach, discussed here, is by optimizing the basic

code structure so more calculations can be done per computational time, taking into

account the fact that some operations are faster than others. This approach is synergistic

with the other approaches. Parallel computing is more efficient when each parallelized

unit is faster, and in particular shared memory architectures are much more efficient

when the algorithms are efficient of memory bandwidth and are CPU-limited.

 While large multiprocessor supercomputers are widely used in ocean modeling, at

the same time, the speed and memory available on personal computers, PCs

(workstations, laptops, etc.), have increased dramatically in recent years, allowing users

to run complex ocean models on local PCs. However, surprisingly little attention has

been given to improvement in the performance of the basic code itself when using a

single processor. It was discovered, that common ocean models may not be optimized for

PCs, which was the motivation behind this study. This deficiency in the computational

efficiency occur for example in the formulations of the EOS used in three community

terrain-following ocean models: ROMS (Haidvogel et al., 2000; Shchepetkin and

McWilliams, 2005) which uses the Jackett and McDougall (1995) formulation, POM

(Blumberg and Mellor, 1987) which uses the Mellor (1991) formulation, and ECOM

(Blumberg et al., 1993) which uses a version of Fofonoff (1956) without the pressure

terms. Over 3000 users world wide use these community models and can benefit from

improved codes. The above formulations are also compared with a new polynomial fit.

The EOS in the above models accounts for ~10% of the total calculations, so optimizing

 4

the EOS alone would speed the entire model by less than 10%. The most computationally

demanding part in POM for example is the turbulence scheme (Mellor and Yamada,

1982) which takes ~20% of the entire model calculations, but preliminary tests (not

shown) indicate the potential for speeding up the turbulence scheme and other parts of

ocean model codes using similar concepts as demonstrated here with the EOS example.

2. The formulation of the equation of state

 The original UNESCO expression, without the pressure dependent terms can be

written in the form,

2

41
2/32

333231

4
25

3
24

2
232221

5
15

4
14

3
13

2
121100

)(

)(

),(

ScSccc

Sccccc

ccccccS

++++

+++++

+++++=

θθ

θθθθ

θθθθθθρ

 (1)

where ρ, S and θ are the density, salinity and potential temperature, respectively. This

formulation was based on fitting the expression to a large sample of oceanic observations

in order to find the optimal coefficients cij. Note however, that the original formula used

the in-situ temperature, T, while ocean models need the potential temperature, θ, where

ρ(S,T) = ρ(S,θ,p=0), and p is pressure. The EOS in the standard POM, is written the same

way as (1) (straight forward format, but apparently costly, as demonstrated later). The

original complex UNESCO pressure dependent term that is added to (1) was simplified

by Mellor (1991), which reduces the computational cost by a factor of 3 compared with

the full UNESCO formulation. Other alternative pressure terms are also been developed

for the other schemes proposed below, but they will be evaluated in detail in a separate

paper, so the pressure term is ignored for now. Various ways to make (1) more

computationally efficient have been tested. First, we can rearrange (1) into Horner’s form

(Knuth, 1973), and turn the 3/2 power to a square root call, so it can be written as,

SScccSScccccc

ccccccS

)())((

))))((((),(
2

33323141
4

25
3

24
2

232221

151413121100

θθθθθθ

θθθθθθρ

+++++++++

++++++=
 (2)

 5

 With this form we can achieve an immediate speedup factor of up to ~3 on a PC (see

detail results on various platforms later). This is due to the expense of exponentiation,

and the reduction in the number of multiplications. This optimized form of the UNESCO

EOS is proposed to be implemented in ECOM. Note also that most compilers may not

optimize writing to an array, then reading from it and writing to it again. For example, the

code may calculate the density, ρ(x,y,z)=rho(i,j,k), where i,j,k are the model grid indexes

and then normalize the results by a reference value, rhoref, and multiply by a land/ocean

mask, fsm(i,j). However, even simply putting the expression in a single statement and

rolling the rhoref constant into the coefficients can further reduce the cost. The remaining

code in (2) is nearly optimal, but it still contains a square root (relatively slow operation),

and includes many terms. One may ask a fundamental question: why was this fit in (1)

chosen in the first place? Is the odd power important for some reason? When we looked

at the original paper, entered the data, and did our own fit, we found no compelling

reason to fit to S3/2. The error between repeated non-dimensional density measurements

is on the order of 10-3 (measurements are in the form of non-dimensional difference from

the standard density of seawater). When comparing the computed density using the new

fit with the data, the error is of the same order of magnitude, also similar to the error

between UNESCO and the data. Therefore the error of the fit is within the measurement

error. The proposed new fit, of the form

SccccSccc

SSccccccccS
))))(((()))((

)((())))((((),(

141312111098

76543210

+++++++
+++++++=

θθθθθθ
θθθθθθρ

 (3)

is somewhat faster than (2), especially when compiler optimizations are not used for their

maximum strength (see results shown later).

 There are other ways to reduce calculations. ROMS uses a Jacket and McDougal

1995 algorithm, a nested polynomial fit, where each coefficient of the final polynomial is

itself computed as a polynomial. While the ROMS implementation could presumably be

improved, in its present form which includes so many terms, it will be much more

difficult to optimize it to the point where it will be competitive with (2) or (3), compared

with the more straight forward POM’s algorithm in (1).

 6

3. Performance tests

 To demonstrate the sensitivity of the calculations to the form of the EOS we

performed simple experiments, calculating a three dimensional density field over

101x101x21 grid points and 1000 time steps, using a single processor. Since the size of

each ocean model code is very different (e.g., the modular ROMS code has ~20 times

more lines of code than the simpler POM code, see the model comparison in Ezer et al.,

2002), only the EOS routine (without the pressure term) is executed. Double precision is

used in all cases.

 The experiments include 4 different EOS codes labeled as follows:

ROMS- the EOS in the ROMS code, which is based on Jacket and McDougal (1995).

POM- the EOS in the POM code, which is based on Mellor (1991) and written in the

form of (1).

UNOPT- optimized UNESCO code where the terms in the original formulation

rearranged in the form of (2).

DKAP7- the new polynomial fit (named for D. Kruger-A. Pence, version 7) in the form

of (3).

 Without the pressure effect the ROMS, POM and UNOPT EOS codes give

identical densities to the values obtained by the original UNESCO formula (up to

computer round off errors). The new fit in the DKAP7 code gives slightly different

results, but the difference between UNESCO and DKAP7 is only ~10-6 kg m-3 (Table 1)

so the error may not be significant for most practical applications.

 Each of the 4 algorithms was executed on 3 different platforms and 4 different

compilers, representing a range of computers and operation systems: SGI supercomputer

cluster (but using only one of its processors out of the 100s available), Dell workstation

(tested with two different compilers), and Dell laptop. Table 2 summarizes the attributes

of the 4 different platforms and compilers that were used for each of the 4 codes (for a

total of 4 codes x 4 platforms x 2 compilation options = 32 experiments). On each of the

above platform two experiments were performed, one without compiler optimization and

one with optimization option such as “–O3” or “–fast”, so that the speedup achieved by

rewriting the code can be compared with the speedup achieved by the compiler itself

(which does not require any change in existing ocean models codes). The comparison is

summarized in Fig. 1. The results demonstrate that on all platforms rewriting the

 7

calculations (as in UNOPT or DKAP7 codes) can improve the efficiency beyond what is

possible with compilers optimization alone. However, with good compiler optimization

such as the SGI f90 (Fig. 1a), DKAP7 is faster than POM and ROMS only by factors of 2

and 3, respectively, while on less efficient compilers such as GNU g77 (Fig. 1d), DKAP7

is faster than POM and ROMS by as much as factors of 16 and 6, respectively. On two

platforms (Windows and SGI) the new polynomial code was so well optimized that the

compiler optimizers were unable to achieve any further improvement. The ROMS code

was more efficient that the POM code on all platforms except the SGI; this may be

explained by the additional penalty in the multiprocessor SGI for writing more temporary

coefficients in ROMS. Additional experiments (not shown) running the codes using

multiprocessors on the SGI cluster (using its automatic parallelization) indicate that the

relative speedup achieved on a single processor carries on to the parallel codes.

 The main point of this comparison is to demonstrate that codes that produce

practically identical numerical results can still differ in their computational costs by an

order of magnitude, indicating the great potential to improve the efficiency of ocean

models (and other codes).

4. Summary and conclusions

 The search for the perfect Equation of State will undoubtedly go on for a long

time to come. Here, a new fit that takes into account computational considerations appear

to significantly improve the speed of the equation of state in computer models. While it is

difficult to characterize the speed of an algorithm in general for different architectures,

our new fit for the equation of state is 6-16 times faster on a PC than the existing POM

implementation, and the fastest on every architecture on which it was tested. However, it

was also shown that even rewriting the equations currently used in existing models, can

achieve almost as much improvement as the new fits. The results indicate that if

programmers do not pay much attention to the basic code structure, the performance of

codes are very machine-dependent (Fig. 1) where it is difficult to predict how the same

code will perform on a particular computer or even on the same computer when using

different compilers.

 Beyond the improvement of the EOS itself, this study has further implications on

the efficiency of ocean models in general. In the past, high resolution and large scale

ocean (and atmospheric) models could only be executed on large supercomputers that

 8

were available only at national labs and universities, so codes were not particularly

optimized for smaller PCs. However, with the dramatic increase in recent years in

memory and speed of PCs, more users run ocean models on local PCs. This study

demonstrates the potential to significantly improve the performance of ocean models and

thus allow higher resolution models than previously possible. A follow up study now

underway will evaluate in more details the accuracy and speed of the pressure dependent

terms and the possible influence that the EOS may have on realistic model calculations.

A prototype of new ocean model codes is under development that will speedup other

parts of the code in similar manner as demonstrated here with the EOS.

Acknowledgments

The authors are indebted to Martin Senator, Roger Pinkham, Peter Stahley and George

Mellor for help and advice. T.E. is supported by ONR grant N00014-04-10381, and by

MMS and NSF grants. A.B. was funded under ONR grant, N00014-03-1-0633.

References

Blumberg, A.F., Mellor, G.L., 1987. A description of a three-dimensional coastal ocean

 circulation model. In: Three-Dimensional Coastal ocean Models, edited by N.

 Heaps, American Geophysical Union, 1-16.

Blumberg, A.F., Signell, R.P., Jenter, H.L., 1993. Modeling transport processes in the

 coastal ocean, Journal of Marine Environmental Engineering, 1, 31-52.

Bryan, K., Cox, M.D., 1972. An appropriate equation of state for the study of the

 circulation of the world ocean. Journal of Physical Oceanography, 2, 319-335.

Ezer, T., Mellor, G.L., 2004. A generalized coordinate ocean model and a comparison of

 the bottom boundary layer dynamics in terrain following and in z-level grids.

 Ocean Modelling, 6, 379-403.

Ezer, T., Arango, H., Shchepetkin, A.F., 2002. Developments in terrain-following ocean

 models: Intercomparisons of numerical aspects. Ocean Modelling, 4, 249-267.

Ezer, T. and Mellor, G.L., 1997. Simulations of the Atlantic Ocean with a free surface

 sigma coordinate ocean model. Journal of Geophysical Research, 102(C7):

 15,647-15,657.

 9

Fofonoff, N.P., 1956. Some properties of sea water influencing the formation of Antarctic

 bottom water. Deep-Sea Research, 4(1), 32-35.

Haidvogel, D.B., Arango, H.G., Hedstrom, K., Beckmann, A., Malanotte- Rizzoli, P.,

 Shchepetkin, A.F., 2000. Model evaluation experiments in the North Atlantic

 basin: Simulations in nonlinear terrain-following coordinates, Dynamics of

 Atmospheres and Oceans, 32, 239-381.

Jackett, D.R., McDougall, T.J., 1995. Minimal adjustment of hydrostatic profiles to

 achieve static stability. Journal of Atmospheric and Oceanic Technology, 12, 381-

 389.

Knuth, D.E., 1973. The art of computer programming. Addison-Wesley, 467 pp.

McDougall, T.J., Jackett, D.R., Wright, D.G., Feistel R., 2003. Accurate and

 computationally efficient algorithms for potential temperature and density of

 seawater. Journal of Atmospheric and Oceanic Technology, 20, 730-741.

Mellor, G. L., 1991. An equation of state for numerical models of ocean and estuaries.

 Journal of Atmospheric and Oceanic Technology, 8, 609-611.

Mellor, G.L., Yamada, T., 1982. Development of a turbulent closure model for

 geophysical fluid problems. Review of Geophysics, 20, 851-875.

Shchepetkin, A.F., McWilliams, J.C., 2005. The Regional Oceanic Modeling System

 (ROMS): A split-explicit, free surface, topography-following-coordinate oceanic

 model. Ocean Modelling, In Press.

UNESCO, 1981. Tenth report of the Joint panel on oceanographic tables and standards.

 Technical Report in Marine Science No. 36, UNESCO, Paris, 25 pp.

 10

Table 1. Comparison of the density calculated from the DKAP7 and the UNESCO
formulations for typical ocean temperature and salinity values. The units are temperature,
T, in °C, salinity, S, in parts per thousand (ppt), and density relative to reference dendity,
ρ-1000, in kg m-3.

T S ρDKAP7 ρUNESCO ρDKAP7- ρUNESCO
5 33 26.0913 26.0900 0.0013
5 35 27.6770 27.6755 0.0016
5 37 29.2678 29.2622 0.0016
10 33 25.3910 25.3909 0.0001
10 35 26.9528 26.9524 0.0004
10 37 28.5159 28.5153 0.0006
15 33 24.4403 24.4312 -0.0009
15 35 25.9721 25.9728 -0.0007
15 37 27.5154 27.5159 -0.0004
20 33 23.2374 23.2382 -0.0008
20 35 24.7625 24.7630 -0.0005
20 37 26.2893 26.2895 -0.0002
25 33 21.8323 21.8324 0.0000
25 35 23.3434 23.3431 0.0004
25 37 24.8562 24.8555 0.0007
30 33 20.2294 20.2301 -0.0007
30 35 21.7283 21.7286 -0.0003
30 37 23.2289 23.2290 -0.0001

Table 2. Attributes of the different computers and compilers used.

Computer
type

Operating
System

Memory Clock
speed

Fortran
compiler

Compiler
optimization

SGI Origin 3800

IRIX 1 GB 600 MHz SGI f90 -Ofast

Dell workstation Linux 1 GB 2.8 GHz

GNU g77 -O3

Dell workstation Linux 1 GB 2.8 GHz

Portland pgf90 -fast

Dell laptop Windows 256 MB 400 MHz

Digital f90 -fast

 DKAP7 UNOPT POM ROMS
0

10

20

30

40

50

60

70
System= LINUX; Compiler= g77/g77-O3

 DKAP7 UNOPT POM ROMS
0

5

10

15

20

25

30

35

40
System= LINUX; Compiler= pgf90/pgf90-fast

 DKAP7 UNOPT POM ROMS
0

20

40

60

80

100

120

140
System= WINDOWS; Compiler= f90/f90-fast

C
P

U
 (s

ec
)

 DKAP7 UNOPT POM ROMS
0

10

20

30

40

50

60

70
System= SGI; Compiler= f90/f90-Ofast

C
P

U
 (s

ec
)

(a) (b)

(c) (d)

Tal Ezer
Figure 1. Code performance comparison for four codes of the Equation of State (see text for detail). The result is in seconds for 1000 time steps running on four platforms: (a) SGI computer with f90 compiler, (b) Linux workstation with pgf90 compiler, (c) Windows laptop with f90 compiler and (d) as (b), but with g77 compiler; note the different scale of each panel. The dark shaded bar graphs represent runs with no compiler optimization and the light shaded bar graphs represent runs with compiler optimization as indicated.

