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Abstract 

 The numerical representation of the equation of state (EOS) in ocean models is 

reevaluated in terms of its computational efficiency. Ways to speedup the EOS as well as 

basic codes in ocean models are discussed and demonstrated. It is shown that even a 

simple rearrangement of a calculation order can significantly speedup the codes currently 

used in several community terrain-following ocean models. Using a new EOS with 

particular fit to data that takes into account the computational cost, can speedup the code 

even further. Various EOS codes were tested on different computer platforms, 

demonstrating the potential of speeding up codes by as much as 2-3 times on a 

supercomputer and up to 6-16 times on laptops and personal computers. 

 

1. Introduction 

 The equation of state, used to relate density of sea water to salinity, temperature 

and pressure, has concerned oceanographers for a long time (e.g., Fofonoff, 1956). While 

earlier efforts have used simple linear fits to data, a more accurate but complex equation 

of state (EOS) became the standard (UNESCO, 1981). However, the formulation was 

very computationally intensive, so ocean modelers have attempted to reduce the cost with 

improved formulations that may trade off accuracy for speed. For example, early z-level 

models, whose vertical grid follows constant depth levels, have used a table of 

coefficients for each level (Bryan and Cox, 1972). Simplified approach of this nature can 

not be used in non-aligned vertical grids such as in terrain-following (“s” or “sigma” 

coordinates) models (e.g., the Estuarine, Coastal and Ocean Model, ECOM, Blumberg et 

al., 1993; the Princeton Ocean Model, POM, Blumberg and Mellor, 1987; the Regional 

Ocean Modeling System, ROMS, Shchepetkin and McWilliams, 2005), or in generalized 

coordinate ocean models (Ezer and Mellor, 2004). Note that early sigma models were 

used mostly for shallow coasts and estuaries, so the pressure dependency of the EOS was 

often neglected. The extension of sigma ocean model applications to deep-ocean and 

basin-scale problems (Ezer and Mellor, 1997; Haidvogel et al., 2000) require to include 
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the pressure effect and led, for example, to the EOS suggested by Mellor (1991), which 

simplified the pressure term in the UNESCO formulation.  

 There are two factors limiting computational fluid dynamics models, memory and 

computational time. In the case of ocean modeling, the memory size is usually less of a 

problem (except in very high resolution or global models), but time is a limiting factor 

(e.g., calculations of a real-time daily forecast should take much less than a day to be 

useful). Thus, a faster computation means the ability to have a larger domain, a finer grid, 

or the ability to perform more experiments. There are three basic approaches for speeding 

up codes. The first approach is by using parallel codes (e.g., the ROMS code) that take 

advantage of multiprocessor supercomputers. The second approach is by using numerical 

schemes that allow longer time steps between calculations (Ezer et al., 2002; Shchepetkin 

and McWilliams, 2005). The third approach, discussed here, is by optimizing the basic 

code structure so more calculations can be done per computational time, taking into 

account the fact that some operations are faster than others. This approach is synergistic 

with the other approaches. Parallel computing is more efficient when each parallelized 

unit is faster, and in particular shared memory architectures are much more efficient 

when the algorithms are efficient of memory bandwidth and are CPU-limited. 

 While large multiprocessor supercomputers are widely used in ocean modeling, at 

the same time, the speed and memory available on personal computers, PCs 

(workstations, laptops, etc.), have increased dramatically in recent years, allowing users 

to run complex ocean models on local PCs. However, surprisingly little attention has 

been given to improvement in the performance of the basic code itself when using a 

single processor. It was discovered, that common ocean models may not be optimized for 

PCs, which was the motivation behind this study. This deficiency in the computational 

efficiency occur for example in the formulations of the EOS used in three community 

terrain-following ocean models: ROMS (Haidvogel et al., 2000; Shchepetkin and 

McWilliams, 2005) which uses the Jackett and McDougall (1995) formulation, POM 

(Blumberg and Mellor, 1987) which uses the Mellor (1991) formulation, and ECOM 

(Blumberg et al., 1993) which uses a version of Fofonoff (1956) without the pressure 

terms. Over 3000 users world wide use these community models and can benefit from 

improved codes. The above formulations are also compared with a new polynomial fit. 

The EOS in the above models accounts for ~10% of the total calculations, so optimizing 
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the EOS alone would speed the entire model by less than 10%. The most computationally 

demanding part in POM for example is the turbulence scheme (Mellor and Yamada, 

1982) which takes ~20% of the entire model calculations, but preliminary tests (not 

shown) indicate the potential for speeding up the turbulence scheme and other parts of 

ocean model codes using similar concepts as demonstrated here with the EOS example. 

 

2. The formulation of the equation of state 

 The original UNESCO expression, without the pressure dependent terms can be 

written in the form, 
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where ρ, S and θ are the density, salinity and potential temperature, respectively. This 

formulation was based on fitting the expression to a large sample of oceanic observations 

in order to find the optimal coefficients cij. Note however, that the original formula used 

the in-situ temperature, T, while ocean models need the potential temperature, θ, where 

ρ(S,T) = ρ(S,θ,p=0), and p is pressure. The EOS in the standard POM, is written the same 

way as (1) (straight forward format, but apparently costly, as demonstrated later). The 

original complex UNESCO pressure dependent term that is added to (1) was simplified 

by Mellor (1991), which reduces the computational cost by a factor of 3 compared with 

the full UNESCO formulation. Other alternative pressure terms are also been developed 

for the other schemes proposed below, but they will be evaluated in detail in a separate 

paper, so the pressure term is ignored for now. Various ways to make (1) more 

computationally efficient have been tested. First, we can rearrange (1) into Horner’s form 

(Knuth, 1973), and turn the 3/2 power to a square root call, so it can be written as, 
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 With this form we can achieve an immediate speedup factor of up to ~3 on a PC (see 

detail results on various platforms later). This is due to the expense of exponentiation, 

and the reduction in the number of multiplications. This optimized form of the UNESCO 

EOS is proposed to be implemented in ECOM. Note also that most compilers may not 

optimize writing to an array, then reading from it and writing to it again. For example, the 

code may calculate the density, ρ(x,y,z)=rho(i,j,k), where i,j,k are the model grid indexes 

and then normalize the results by a reference value, rhoref, and multiply by a land/ocean 

mask, fsm(i,j). However, even simply putting the expression in a single statement and 

rolling the rhoref constant into the coefficients can further reduce the cost. The remaining 

code in (2) is nearly optimal, but it still contains a square root (relatively slow operation), 

and includes many terms. One may ask a fundamental question: why was this fit in (1) 

chosen in the first place? Is the odd power important for some reason? When we looked 

at the original paper, entered the data, and did our own fit, we found no compelling 

reason to fit to S3/2.  The error between repeated non-dimensional density measurements 

is on the order of 10-3 (measurements are in the form of non-dimensional difference from 

the standard density of seawater).  When comparing the computed density using the new 

fit with the data, the error is of the same order of magnitude, also similar to the error 

between UNESCO and the data.  Therefore the error of the fit is within the measurement 

error. The proposed new fit, of the form 
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is somewhat faster than (2), especially when compiler optimizations are not used for their 

maximum strength (see results shown later).  

 There are other ways to reduce calculations. ROMS uses a Jacket and McDougal 

1995 algorithm, a nested polynomial fit, where each coefficient of the final polynomial is 

itself computed as a polynomial. While the ROMS implementation could presumably be 

improved, in its present form which includes so many terms, it will be much more 

difficult to optimize it to the point where it will be competitive with (2) or (3), compared 

with the more straight forward POM’s algorithm in (1). 
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3. Performance tests 

 To demonstrate the sensitivity of the calculations to the form of the EOS we 

performed simple experiments, calculating a three dimensional density field over 

101x101x21 grid points and 1000 time steps, using a single processor. Since the size of 

each ocean model code is very different (e.g., the modular ROMS code has ~20 times 

more lines of code than the simpler POM code, see the model comparison in Ezer et al., 

2002), only the EOS routine (without the pressure term) is executed. Double precision is 

used in all cases.  

 The experiments include 4 different EOS codes labeled as follows: 

ROMS- the EOS in the ROMS code, which is based on Jacket and McDougal (1995). 

POM- the EOS in the POM code, which is based on Mellor (1991) and written in the 

form of (1). 

UNOPT- optimized UNESCO code where the terms in the original formulation 

rearranged in the form of (2). 

DKAP7- the new polynomial fit (named for D. Kruger-A. Pence, version 7) in the form 

of (3). 

 Without the pressure effect the ROMS, POM and UNOPT EOS codes give 

identical densities to the values obtained by the original UNESCO formula (up to 

computer round off errors). The new fit in the DKAP7 code gives slightly different 

results, but the difference between UNESCO and DKAP7 is only ~10-6 kg m-3 (Table 1) 

so the error may not be significant for most practical applications. 

 Each of the 4 algorithms was executed on 3 different platforms and 4 different 

compilers, representing a range of computers and operation systems: SGI supercomputer 

cluster (but using only one of its processors out of the 100s available), Dell workstation 

(tested with two different compilers), and Dell laptop. Table 2 summarizes the attributes 

of the 4 different platforms and compilers that were used for each of the 4 codes (for a 

total of 4 codes x 4 platforms x 2 compilation options = 32 experiments). On each of the 

above platform two experiments were performed, one without compiler optimization and 

one with optimization option such as “–O3” or “–fast”, so that the speedup achieved by 

rewriting the code can be compared with the speedup achieved by the compiler itself 

(which does not require any change in existing ocean models codes). The comparison is 

summarized in Fig. 1. The results demonstrate that on all platforms rewriting the 
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calculations (as in UNOPT or DKAP7 codes) can improve the efficiency beyond what is 

possible with compilers optimization alone. However, with good compiler optimization 

such as the SGI f90 (Fig. 1a), DKAP7 is faster than POM and ROMS only by factors of 2 

and 3, respectively, while on less efficient compilers such as GNU g77 (Fig. 1d), DKAP7 

is faster than POM and ROMS by as much as factors of 16 and 6, respectively. On two 

platforms (Windows and SGI) the new polynomial code was so well optimized that the 

compiler optimizers were unable to achieve any further improvement. The ROMS code 

was more efficient that the POM code on all platforms except the SGI; this may be 

explained by the additional penalty in the multiprocessor SGI for writing more temporary 

coefficients in ROMS. Additional experiments (not shown) running the codes using 

multiprocessors on the SGI cluster (using its automatic parallelization) indicate that the 

relative speedup achieved on a single processor carries on to the parallel codes.  

 The main point of this comparison is to demonstrate that codes that produce 

practically identical numerical results can still differ in their computational costs by an 

order of magnitude, indicating the great potential to improve the efficiency of ocean 

models (and other codes). 

4. Summary and conclusions 

 The search for the perfect Equation of State will undoubtedly go on for a long 

time to come. Here, a new fit that takes into account computational considerations appear 

to significantly improve the speed of the equation of state in computer models. While it is 

difficult to characterize the speed of an algorithm in general for different architectures, 

our new fit for the equation of state is 6-16 times faster on a PC than the existing POM 

implementation, and the fastest on every architecture on which it was tested. However, it 

was also shown that even rewriting the equations currently used in existing models, can 

achieve almost as much improvement as the new fits. The results indicate that if 

programmers do not pay much attention to the basic code structure, the performance of 

codes are very machine-dependent (Fig. 1) where it is difficult to predict how the same 

code will perform on a particular computer or even on the same computer when using 

different compilers.  

 Beyond the improvement of the EOS itself, this study has further implications on 

the efficiency of ocean models in general. In the past, high resolution and large scale 

ocean (and atmospheric) models could only be executed on large supercomputers that 
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were available only at national labs and universities, so codes were not particularly 

optimized for smaller PCs. However, with the dramatic increase in recent years in 

memory and speed of PCs, more users run ocean models on local PCs. This study 

demonstrates the potential to significantly improve the performance of ocean models and 

thus allow higher resolution models than previously possible. A follow up study now 

underway will evaluate in more details the accuracy and speed of the pressure dependent 

terms and the possible influence that the EOS may have on realistic model calculations.  

A prototype of new ocean model codes is under development that will speedup other 

parts of the code in similar manner as demonstrated here with the EOS.   
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Table 1. Comparison of the density calculated from the DKAP7 and the UNESCO 
formulations for typical ocean temperature and salinity values. The units are temperature, 
T, in °C, salinity, S, in parts per thousand (ppt), and density relative to reference dendity, 
ρ-1000, in kg m-3. 
 

T S ρDKAP7 ρUNESCO ρDKAP7- ρUNESCO 
5 33 26.0913 26.0900 0.0013
5 35 27.6770 27.6755 0.0016
5 37 29.2678 29.2622 0.0016
10 33 25.3910 25.3909 0.0001
10 35 26.9528 26.9524 0.0004
10 37 28.5159 28.5153 0.0006
15 33 24.4403 24.4312 -0.0009
15 35 25.9721 25.9728 -0.0007
15 37 27.5154 27.5159 -0.0004
20 33 23.2374 23.2382 -0.0008
20 35 24.7625 24.7630 -0.0005
20 37 26.2893 26.2895 -0.0002
25 33 21.8323 21.8324 0.0000
25 35 23.3434 23.3431 0.0004
25 37 24.8562 24.8555 0.0007
30 33 20.2294 20.2301 -0.0007
30 35 21.7283 21.7286 -0.0003
30 37 23.2289 23.2290 -0.0001

 
 
 
 
Table 2. Attributes of the different computers and compilers used. 
 
Computer  
type 

Operating 
System 
 

Memory Clock  
speed 

Fortran 
compiler 

Compiler 
optimization 

SGI Origin 3800 
 

IRIX 1 GB 600 MHz SGI f90 -Ofast 

Dell workstation Linux 1 GB 2.8 GHz  
 

GNU g77 -O3 

Dell workstation Linux 1 GB 2.8 GHz 
 

Portland pgf90 -fast 

Dell laptop Windows 256 MB 400 MHz 
 

Digital f90 -fast 
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Figure 1. Code performance comparison for four codes of the Equation of State (see text for detail). The result is in seconds for 1000 time steps running on four platforms: (a) SGI computer with f90 compiler, (b) Linux workstation with pgf90 compiler, (c) Windows laptop with f90 compiler and (d) as (b), but with g77 compiler; note the different scale of each panel. The dark shaded bar graphs represent runs with no compiler optimization and the light shaded bar graphs represent runs with compiler optimization as indicated. 




