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Abstract—For modern parallel applications, modeling their
general execution characteristics, such as power and time, is
difficult due to a great many factors affecting software-hardware
interactions, which is also exacerbated by the dearth of measuring
and monitoring tools for novel architectures, such as Intel Xeon
Phi processors. To address this modeling challenge, the present
work proposes to employ the Empirical Mode Decomposition
(EMD) method to describe an execution as a series of modes
culminating in a single residual trend, for which, in its turn, a
model equation is obtained as a non-linear fit. As outcome, an
overall energy consumption may be predicted using this model.
A real-world quantum-chemistry application GAMESS and a
molecular-dynamics proxy application CoMD were considered in
the experiments. The results demonstrate that the energy mod-
eled ranges within 10–30% of the measured energy, depending
on the length of execution.

Keywords-EMD, Modeling, Time, Power, Energy, Power Lim-
iting, Intel Xeon Phi, Knights Landing, GAMESS, CoMD

I. INTRODUCTION

The imposed 20MW power cap [19] has placed great strain

on achieving exascale performance in the near future. Al-

though processor hardware is becoming more energy-efficient,

over 60% of the power budget is dedicated to peripheral

devices, such as network and cooling devices. This leaves

only 40% of the power budget towards exascale performance

(processor and memory components)—thus, high performance

systems are focused on getting the most performance out of

the hardware available.

When using hardware, especially large-scale, multi-node

systems, it is important to run software with the best available

execution configuration. However, testing all available config-

urations is prohibitively expensive and wasteful; this is where

modeling is beneficial. Currently, a general model to predict

energy, power, and time for a given application and hardware

configuration does not exist. Therefore, this work paves the

way for such a model. Here, power traces are processed using

the Empirical Mode Decomposition (EMD) method to obtain

the underlying basic trend (denoted typically as “residual”)

of power over time. For each application run, a non-linear

function is fitted into its residual data points, and thereby

providing a model of the execution for the tested software

and hardware configuration.

The new Intel Xeon Phi, code-named “Knights Landing”

(KNL), is now available as a processor or co-processor. It is

capable of hosting a full Linux OS [30], [18], and supports

all legacy codes. The previous generation of Xeon Phi, code-

named “Knights Corner” (KNC), was available only as a co-

processor. For KNL, there are a number of hardware improve-

ments over KNC, e.g., a higher performance-per-watt ratio.

Also, KNL supports the Multi-Channel DRAM (MCDRAM)

which is a 3D-stacked DDR memory, which is capable of

higher than the traditional DDR memory bandwidth. KNL may

deliver up to three TFLOPS double-precision performance,

whereas KNC is capped at one TFLOPS [30]; and the KNL

thermal design power (TDP) is lower: 215 W for KNL as

compared to 245 W for KNC. Due to the many enhancements

and advantages of KNL over KNC, this work focuses on KNL

as processor.

Real-world applications typically consist of highly vari-

able workloads, some are compute-intensive and others are

memory-intensive. The parallel applications chosen in this

work are GAMESS [15], [14], [28] and CoMD [8], such that

their problem characteristics considered here make them both

compute-intensive, although GAMESS requires significantly

more main memory than CoMD. In a nutshell, the contribu-

tions of this work are as follows:

◦ Proposed a novel procedure for modeling of application

power consumption on a given computing platform by using

runtime traces and variants of the EMD method.

◦ Validated the accuracy of the obtained model on real-world

applications, GAMESS and CoMD.

◦ Demonstrated benefits of using MCDRAM memory on

KNL for parallel applications.

A. Related Work

A general performance model—known as “LogP”—for par-

allel architectures and applications has been proposed already

at the dawn of parallel computing [5]. LogP uses communica-

tion latency, memory transfer overhead, the reciprocal of per-

processor communication bandwidth, and the number of avail-

able processor/memory modules to calculate the application

performance. Following in the footsteps of the LogP model,

the “roofline” model [32] has also been proposed as a general

way to model parallel application runtime performance. It de-

2017 17th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing

978-1-5090-6611-7/17 $31.00 © 2017 IEEE

DOI 10.1109/CCGRID.2017.99

1000



(a) Power Trace for CoMD

(b) IMF Amplitudes for CoMD

(c) Power Trace for GAMESS

(d) IMF Amplitudes for GAMESS

Figure 1: Illustration of EMD: Original power trace for CoMD (a) and GAMESS (c) decomposed into IMFs (b) and (d),

respectively, where the final mode is the the residual trend.

scribes the relationship between the data movement and com-

putational throughput, which helps to identify performance

bottlenecks with respect to the theoretical performance of

the hardware. These models, however, do not consider power

and energy consumption of a software-hardware combination.

Building upon the roofline model, [4] includes power and

energy contributions of the parallel architecture, however,

is not easily extendable to real-world applications, such as

GAMESS or CoMD, which typically stress multiple platform

components simultaneously. Instruction-level modeling [29] is

another way for characterizing the hardware, which is also not

easily extended to real-world applications. McPAT is a state-

of-the-art power, area, and timing modeling framework [26]

for manycore and multicore processors. It models the low-level

interactions of the hardware at the transistor level as well as

the critical path of an application. The framework is especially

useful in finding underlying performance bottlenecks, experi-

menting with theoretical workloads in simulators and stress-

testing new hardware designs. The methodology proposed here

has a higher-level of applicability: It considers applications in

their entirety, does not require low-level hardware component

knowledge, which may not be readily available from vendors,
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and may be easily applied by application developers and end-

users.

Over the past few years, a large body of knowledge has

been cultivated by researchers interested in the Intel Xeon Phi.

However, only few of them investigate power-performance

tradeoffs [4], [25], [33], [2], [20]. The effect of thread affinity

on the energy consumption has been evaluated in [22], and

a model for energy on KNC in the offload mode has been

proposed in [23].

The remainder of the paper is organized as follows: Sec-

tion II presents the procedure for modeling execution traces

using EMD; Section III describes the experimental results

and validation for the parallel applications and platform used;

Section IV concludes.

II. MODELING WITH EMD

Since modeling complex interactions between a computing

platform and parallel application has proven difficult when

singling out specific platform components or concentrating on

specific workloads, this work models the execution from a

high-level perspective given the residual trend (power as a

function of time) obtained using the EMD method.

A. Empirical Mode Decomposition

The Empirical Mode Decomposition (EMD) method [16],

[34] is considered here to analyze the entire calculation

without breaking it into smaller segments or phases, which

has proven to be difficult to do in conjunction with power

readings [23]. EMD provides non-parametric non-stationary

time-series analysis, which has been already successfully

applied in a variety of fields, such as medicine, finance,

engineering, and more recently in geosciences. The EMD code

used here is based on the code adapted for analysis of sea

level data [11] and climate change studies [10]. To the authors

knowledge, EMD has not been used before to investigate

parallel application performance and energy consumption. The

main advantage of EMD over standard spectral methods is that

it detects oscillating modes with time-dependent amplitudes

and frequencies, so it is useful for analyzing irregular data with

unknown frequencies. For application execution data, however,

the interpretation of the EMD results is not straightforward,

since individual modes do not necessarily represent particular

execution characteristics.

The EMD implementation used here is based on the original

one from [16], [34], as adapted in [11], and is available at [9].

Figure 1 presents two examples of the EMD procedure on a

power trace; Fig. 1a shows the trace of the execution of the

molecular dynamics application CoMD1 and Fig. 1c shows

the trace of the execution of the quantum-chemistry package

GAMESS2, both collected on the Intel Xeon Phi processor.

Figure 1 provides a visual representation of each step in the

EMD process. EMD decomposes the original power trace

1The EAM force kernel was used on MCDRAM with problem size 100, 63
cores, and a power limit of 120W (see Section III).

2The 1L2Y problem, MCDRAM, 32 cores, and a default power limit of 215W
were used (see Section III).

Figure 2: Illustration of the residual found using EMD vs

EEMD applied to the same power trace.

(time-series) into oscillating intrinsic mode functions (IMFs)

and into a residual trend, which is the final mode, with respect

to time-variable amplitudes (in Figs. 1b and 1d). Note that

the total number of IMFs, which output by EMD, depends

on the trace characteristics. EMD extracts IMFs through a

process called sifting. To sift, the minimum and maximum

extrema of the time-series are used to calculate the average; the

difference between the average and time-series is then treated

as the time-series for the next sift. This process continuously

refines the dataset until the standard deviation of the resulting

time-series is less than 0.2 (see [16]). Once this standard

deviation is obtained, the resulting time-series is accepted as

an IMF, which is subsequently removed from the original time-

series. This process is repeated until the residual is found

from which no other IMFs may obtained. It may happen,

however, that an intermittent mode cannot manifest under the

standard deviation constraint and “contaminates” the residual

trend with a spurious IMF. To alleviate this problem and

obtain a more reliable shape of the residual, the Ensemble

EMD (EEMD) method [34] may be applied. EEMD works by

introducing white noise to the time-series to exhaust the sifting

process. While in EMD, the sifting processes the original

time-series once to extract each IMF, in EEMD, white noise

and the sifting process are applied to the time-series multiple

times, such that the white noise is averaged out and only the

trace itself remains. This way, EEMD may avoid the residual

contamination, as seen, e.g., in Fig. 2, which illustrates the

difference between residuals found using EMD and EEMD.

It is important to note that the number of modes produced

by EEMD and EMD are the same for the traces explored

in this work and possibly in general. The difference between

the EEMD and EMD is in the shape of the resulting IMFs,

where intermediate EEMD modes now include intermittent

oscillations otherwise included in the residual for EMD.

B. Constructing the Model

The first step is to obtain a power trace. In this work,

power measurements are sampled at a rate of 5ms, which
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is close to the maximum available sampling rate of 1ms. A

sampling rate of 5ms ensures all samples return a reliable

measurement as well as allows for a significant number of

IMF modes to be extracted from the trace to get an accurate

and reliable residual. Lower sampling rates, even on the order

of hundreds of milliseconds, would suffice for producing a

residual trend. However, the higher the sampling rate, the

more IMF components that may be extracted since each IMF

component resembles a particular time-scale (defined as the

time between successive extrema). The residual is on the

largest time-scale obtained by EMD.

The next step is to apply EEMD to the power trace. In this

work, a white noise of 5 W was applied to the time-series

and averaged over 50 EEMD passes. These are the smallest

values, which were found to be sufficient to remove the final

residual contamination, and fit the model to the residuals with

R2 > 0.95. In this work, a total of five traces are collected

for each execution, which is specified by a particular system-

application configuration, all of which are used for a fit. Note

that several traces are used due to the variability in execution

characteristics (e.g., memory stalls and conflicts).

In the final step, the model of the residual is defined as a

quadratic fit into the obtained data points. In other words, three

coefficients of a second-degree polynomial are determined.

The reason for the quadratic polynomial fit is that, in this

work, with the application of EEMD, the shape of the residual

always looks like a quadratic. Furthermore, it is a concave-

down quadratic because of the nature of high-performance

applications in general and how the executions are organized

here, in particular. Namely, to each application execution,

“cool” periods are appended, equal to idle power draw before

and after the execution. Therefore, the maximum power draw

appears towards the center of the entire trace with minima at

the ends (see Figs. 1a and 1c for examples).

Once the quadratic model is obtained, the execution param-

eters, such as the total time, average power, and total energy

may be quite easily defined as follows:

• Total time is difference in the start and end times, the

start time is always zero for the model, and the end time

is taken as the time when the power draw equals to that

at the start (zero) time.

• Average power is an average of the power draw as defined

by the model.

• Energy is found by integrating the model between start

and end times.

An example of a quadratic polynomial fit to several residuals

obtained from multiple runs of a GAMESS problem3 is

illustrated in Fig. 3. Note that the EEMD residual captures

the characteristics of the original power trace well: the energy

approximated by the residual is within 10% of the energy

measured for the trace [11]. For this and all the test cases

presented in Section III, R2 is above 95%.

3The 1L2Y problem, MCDRAM, 32 cores, and a default power limit of 215W
were used (see Section III).

Figure 3: A quadratic fit to residual trends produced by EEMD

from five sample executions of a GAMESS problem.

III. EXPERIMENTAL VALIDATION

First, the computing platform and parallel applications are

outlined. Then, the execution parameters obtained with the

model are compared to those measured for the original trace,

followed by the discussion.

A. Computing Platform

The experiment has been conducted on a single-node KNL

system, nicknamed Rulfo, located at Old Dominion University

and obtained through the Intel Developer Access Program

(IDAP)4. The chosen system is a Colfax KNL Ninja Liquid

Cooled Pedestal Developer Platform, as listed by IDAP. The

Intel Xeon Phi 7210 processor has 64 cores @ 1.3 GHz

(1.5 GHz turbo, and 1.0 GHz min). Each core has four

hardware threads and two 512-bit vector processing units

(VPU) for concurrent processing, and is capable of out-of-

order execution. Cores are interconnected using a 2D mesh,

and omni-path fabric is built into the system for scalability.

The device has two levels of cache by default, L1 contains

32 KB instruction and 32 KB of data and L2 contains 1 MB

shared between two cores (32 MB total).

KNL now contains the new 16GB multi-channel DRAM

(MCDRAM) where various memory modes may now be

adopted by the application: cache, flat, or hybrid mode. By

default, MCDRAM is treated as regular (DDR) memory—flat

mode—which is used in this work; cache mode configures

the MCDRAM to serve as the L3 cache, and hybrid mode

allows 8–12 GB to serve as a L3 cache and the remaining

4–8 GB as traditional DDR memory [30], [18]. In this work,

the MCDRAM has 16 GB of data that expands the DRAM

memory for the system; the system has an additional 98

GB of DRAM memory (6x DDR4 @ 16.384 GB and 2133

MHz) for a total of 112 GB DRAM. In this work, the

MCDRAM and DDR are used separately; MCDRAM may

be used in flat-mode without explicit code additions by using

the numactl command as follows: numactl --membind

4https://software.intel.com/en-us/articles/developer-
access-program-for-intel-xeon-phi-processor-codenamed-knights-landing
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Table I: Best execution time, power, and energy across all the workloads in CoMD and GAMESS and DRAM memory types.

DRAM Memory

Best Config DDR MCDRAM

Application Workload # Cores, PLimit(W) Time(s) Power(W) Energy(J) Time(s) Power(W) Energy(J)

CoMD

LJ (60) 63, 120 19 141 2654 18 138 2528

LJ (80) 63, 120 41 142 5830 40 138 5549

LJ (100) 63, 120 82 142 11664 82 138 11279

EAM (60) 63, 120 35 142 5007 35 138 4776

EAM (80) 63, 120 75 143 10681 73 138 10153

EAM (100) 63, 120 140 142 19906 137 138 18921

GAMESS

1L2Y 32, 215 130 130 16862 127 128 16190

20w 32, 215 212 125 26332 201 123 24708

S265 32, 215 35 126 4444 31 125 3865

S301 32, 215 44 127 5534 39 126 4905

1 ./<executable> . By default, the DDR is used when

executing the application.

1) Power Limiting: For the Intel Xeon Phi, user-defined

frequency scaling is not available; instead, the frequency may

be changed indirectly by setting power limit thresholds for

the device. The Xeon Phi System Management Controller

(SMC) varies operating frequency as power surpasses the

designated thresholds. Specifically, the Xeon Phi uses two

power threshold values—low and high—each with a desig-

nated time window. By default, the low power threshold is

set to the TDP with a time window of 100ms and the high

threshold at 120% of the TDP and a time window of 10ms.

When power exceeds the low threshold for the duration of the

time window, frequency is decreased until power consumption

is less than that of the threshold. When power exceeds the

high threshold for the duration of the time window, the

thermal throttling mechanism is engaged, which forces the

device to the lowest operating frequency of around 500 MHz,

as seen experimentally. More on Xeon Phi power limiting

can be found in the datasheet [17]; however, it has not yet

been updated for Knights Landing. In this work, the static

power limiting is used, such that power limits are set prior

to execution. (See [24] for setting power limits dynamically

according to a power and performance loss model.)

2) Measurement Tools: The Sandia National Labs Pow-

erAPI [21] is used to measure energy via the Linux Power

Capping Framework (LPCF) [1] plugin which reads energy

from the Running Average Power Limit (RAPL) [31], [6]

counters. The PowerAPI uses the hardware locality (hwloc)

API [27], [3] to detect the underlying hardware and is very

portable. Hence, no modification to the API was required to

measure energy for the KNL processor. LPCF is also used to

update power thresholds. Power measurements are collected

every 5ms, and measurements are collected for five seconds

before and after the application is executed to establish the

idle power draw, about 80 W. Although most of computing

platforms support up to 1ms resolution for sampling power

using RAPL, for KNL, it has been found empirically that 1ms

sampling is unreliable on KNL. Thus, 2ms is the minimum

suggested sampling rate. A sampling rate of 5ms was chosen

for this work to accommodate both the accuracy and speed of

the modeling with EEMD, provided that the execution times

are often greater than 60 seconds.

B. Parallel Applications

Applications tested here contain a wide range of workloads

with respect to the real-word problems they are solving and

computing-platform components they stress. Note that the

applications have not been optimized or tuned specifically

for KNL in order to investigate performance and energy

consumption “as is” for hardware-software co-design that

might be followed by joint hardware-software optimizations.

1) GAMESS: The General Atomic and Molecular Elec-

tronic Structure System (GAMESS) [14], [28] is a widely used

quantum chemistry package capable of performing molecular

structure and property calculations by a rich variety of ab initio
methods finding an (approximate) solution of the Schrödinger

equation for a given molecular system. An approximate (un-

correlated) solution is initially found using the Hartree-Fock

(HF) method via an iterative self-consistent field (SCF) ap-

proach, and then is improved using various electron-correlated

methods, such as second-order Møller-Plesset perturbation

theory (MP2). To reduce the computational complexity for

large molecular systems, a fragmentation approach, such as

Fragment Molecular Orbital (FMO) method [13], is used,

which divides the system into fragments and applies a quantum

chemical method to each fragment, followed by the considera-

tion of fragment interactions. The inputs used in this work are

calculated using the MP2 method. Specifically, they are 20w,

a cluster of 20 water molecules; 1L2Y, a synthetic protein

tryptophan cage; S256, a 1-trichloromethylsilatrane (TCMS)

molecule with 6-31G(d) basis set (265 basis functions), and

S301, a TCMS molecule with 6-31G(d,p) basis set (301

basis functions). The inputs 20w and 1L2Y also use FMO

approximations of short-range interactions up to trimers (when

triples of fragments considered as a single fragment). OpenMP

is not available in GAMESS, so half of the total MPI (Message

Passing Interface) tasks are dedicated to computation and
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(a) CoMD

(b) GAMESS

Figure 4: Measured and modeled time vs power for (a)

CoMD and (b) GAMESS with two memory types (DDR and

MCDRAM) and three core counts (32, 48, and 63); and one

subplot per workload.

the remaining half to data movement via the generalized

Distributed Data Interface (GDDI) [12].

2) CoMD: Co-design Molecular Dynamics (CoMD) is a

proxy application developed as part of the Department of En-

ergy co-design research effort [7] at the Extreme Materials at

Extreme Scale (ExMatEx) center. CoMD is compute-intensive,

where approximately 85–90% of the execution time is spent

computing forces. In this work, both force kernels are used: the

more accurate Embedded Atom Model (EAM) force kernel for

short-range material response simulations, such as uncharged

metallic materials [8], and the less accurate Lennard-Jones (LJ)

force kernel. The LJ force kernel consists of one compute loop,

whereas EAM consists of three compute loops and a small halo

data exchange between the second and third loop.

Problem size is expressed as the number of atoms along

an axis of the material; the default material is copper. In

this work, each axis is equivalent (in atoms) which defines

the material shape is a cube. A problem size of 40 equates

to 4 × 403 = 256, 000 atoms. The input sizes used here

are 60, 80, and 100, which correspond to 864K, 2048K,

and 4000K copper atoms, respectively. This work uses the

hybrid MPI and OpenMP programming models to distribute

the workload among processors. One MPI process is dedicted

to each KNL core and OpenMP is used to spawn four hardware

threads for each MPI process. In this work, 63, 48, and

32 cores are used for each workload. For CoMD, since the

material shape is three-dimensional, the material workload is

partitioned among cores as 9×1×7, 8×1×6, and 8×1×4,

for 63, 48, and 32 cores, respectively. Such partitionings were

found experimentally to deliver the best performance for the

corresponding numbers of cores.

C. Comparisons of Different Measured Configurations

Here, CoMD and GAMESS are tested for their various

workloads on the Intel Xeon Phi processor using 32, 48, and

63 cores (with one core allotted solely to the measurement

software, thereby mitigating performance overheads due to

measurements). Either the DDR or MCDRAM memory type

was used exclusively as DRAM (i.e., MCDRAM was in the

“flat mode”). Power limits were set in the following way: (1)

the default of 215 W and (2) from high of 140 W to low of 90

W in increments of 10 W, where the high power limit of 140

W was chosen because average power draw of the applications

does not exceed 150 W. For CoMD, the EAM and LJ force

computation kernels are tested for problem sizes of 60, 80,

and 100. For GAMESS, four problems are tested, 1L2Y, 20w,

S265, and S301. Among all the workloads, Table I states the

execution parameters for the best configuration (column Best
Config), which results in the minimum energy consumed

and which is specified by the number of cores and power

limit and shown as # Cores and PLimit(W), respectively.

It is remarkable that the test cases with MCDRAM always

executed faster and required less power than those with DDR

(cf. columns MCDRAM and DDR), and hence, always consumed

less energy. The difference in power draw between DDR

and MCDRAM for CoMD is larger than that for GAMESS,

although the average power draw for GAMESS is lower than

that CoMD. For CoMD, the obtained average power draw

is 15–20 W higher than that specified by the power limit

(cf. columns Power(W) and PLimit(W) in Table I). The

energy savings obtained were larger for GAMESS than those

for CoMD (see columns Energy(J) in Table I). Finally, the

best configuration (column Best Config) was found to be

the same for both DDR and MCDRAM either for CoMD or

GAMESS across all the workloads. The best power limit for
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CoMD was found to be 120 W for both the LJ and EAM force

kernel, whereas, for GAMESS, the default of 215 W appeared

to be the best power limit.

D. Comparisons of Modeled and Measured Results

Figure 4 presents the measured and modeled time-to-

solution and average power draw for each workload, memory

type, and number of cores. First, notice that the power limiting

has a larger impact for CoMD than GAMESS. In particular,

CoMD shows a linearly decreasing pattern as power draw

increases while GAMESS shows a marginal decrease in the

execution time as power draw increases and a large range of

time-to-solution values, depending on the number of cores.

These results may be explained by a general observation that,

for CoMD, the maximum number of cores is always preferred

while, for a GAMESS workload, smaller numbers of cores

may lead to the best execution time, which is less affected by

the power limiting and L2 cache saturation. Also, recall that

the minimum power limit tested is 90 W, yet the resulting

minimum measured power for CoMD or GAMESS is 105 W

as indicated in Fig. 4, which is in line with authors’ previous

findings in [24]. When comparing modeled and measured

values in Fig. 4 observe that the model calculates reason-

ably well both the time and average power usage for each

configuration, even though power tends are underestimated

and further model tuning may be warranted. In particular,

for CoMD (Fig. 4a), the model closely matches the measured

values with power underestimated by approximately 5–10 W.

For GAMESS (Fig. 4b), on the other hand, the power is

underestimated by almost 15 W in some cases.

Using the constructed model the same best configurations,

specified by the (# Cores, PLimit(W)) pair, were found

as those observed with measurements (see column Best
Config in Table I). For these best configurations, Table II

provides the modeled energy values and quadratic model co-

efficients a, b, and c. Observe that the model acceptably calcu-

lates the total energy consumption (cf. columns Energy(J)
in Tables I and II). Specifically, the modeling error is within

10% for longer executions, i.e., for those taking greater than

100s, while the error increases up to 30% for shorter ones.

For CoMD, which contains shorter traces, the overall average

error has been found to be 15%. CoMD problem size of 100

shows the least error of 5–10%, whereas the problem size of 60

shows the largest error of 15–30%. For GAMESS, workloads

1L2Y and 20w result in the smallest error (less than 10%),

but the errors in S265 and S301 are in the 15–25% range.

Large model errors may be attributed, in part, to fitting the

quadratic model into the outcome (residuals) of the EEMD

procedure, which itself may incur errors of up to 10% [11],

as verified empirically in the course of this work. Note that

fitting into the raw traces is practically an impossible task,

circumventing which is a principal objective of the current

work. It may be possible to decrease the errors by increasing

the power sampling rate, which is set to 5ms in this work

(see Sections II-B and III-A2 for details on this rate choice).

It may be also observed in Table II that, for the test

cases with MCDRAM, the model predicts always less energy

consumption than that predicted for the cases with the DDR

memory, which is in line with the measured results. From

Table II, some tendencies of the model coefficients may be

noticed. In particular, as problem size increases, the coeffi-

cients a and b decrease for both CoMD and GAMESS. Also,

a is always negative, which is a trait of a concave-down shape

of the quadratic residual. Finally, the coefficient c always

increases with problem size. Further testing is necessary to

observe how these tendencies hold across other platforms.

IV. CONCLUSIONS

A high-level modeling approach has been proposed in which

EMD first captures the trend of an execution and then a

quadratic model is used to reproduce this trend. The model

may then be employed to approximate execution parameters,

such as time, power, and energy consumption. The model

accurately calculates the best configuration, comprising core

counts and power limits, that minimizes energy consump-

tion, which is promising in the quest for predicting the best

application-platform configuration for a wide range of con-

figuration parameters. Expanding this model to more general

cases, which also do not involve the entire trace, constitutes

the future work as well as fine tuning the present model to

narrow the model error ranges.

Although only CoMD and GAMESS applications on the

computing platform with KNL processor were used here to

validate the model, the modeling approach has a general ap-

plicability since it does not rely on the application or platform

specifics. Hence the proposed model may be applied to any

hardware-software combination. The only requirement is that

a power trace is collected such that EMD may be applied,

e.g., that the sampling rate is of high enough resolution. The

intrinsic mode functions (IMFs) produced by EMD may also

be used (along with the residual) to understand execution

performance, which is left as a future work. IMFs represent

physical interactions and may be useful to identify execution

phase in real-world applications.

This work also investigated the use of KNL MCDRAM

memory against DDR in flat-mode. The results unanimously

show that using MCDRAM promotes faster execution and a

decreased power draw, especially for larger problem sizes.

Hence, it is suggested that MCDRAM is used whenever

possible to improve performance of any application.
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Table II: Model coefficients and calculated energy for all the configurations from Table I.

DRAM Memory

DDR MCDRAM

Application Workload a b c Energy (J) a b c Energy (J)

CoMD

LJ (60) -0.432 12.161 63.461 3388 -0.401 11.202 64.754 3267

LJ (80) -0.105 5.340 84.493 6561 -0.102 5.145 83.051 6362

LJ (100) -0.026 2.414 96.495 12297 -0.025 2.298 95.328 11933

EAM (60) -0.134 6.138 80.571 5844 -0.133 5.940 80.123 5537

EAM (80) -0.030 2.548 97.848 11321 -0.029 2.481 95.512 10866

EAM (100) -0.008 1.134 108.488 20461 -0.008 1.130 104.974 19512

GAMESS

1L2Y -0.009 1.381 90.230 18109 -0.010 1.406 88.682 17565

20w -0.003 0.599 99.350 27176 -0.003 0.640 95.837 25944

S265 -0.107 4.912 76.968 5286 -0.128 5.428 73.563 4746

S301 -0.075 4.128 80.108 6454 -0.088 4.400 79.125 5768
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